The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (ATR) agonists revealed that the extent and kinetics of β-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When ATR endocytosis was prevented, even weak partial agonists of the β-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine β-arrestin recruitment.
View Article and Find Full Text PDFThe binding and function of β-arrestins are regulated by specific phosphorylation motifs present in G protein-coupled receptors (GPCRs). However, the exact arrangement of phosphorylated amino acids responsible for establishing a stable interaction remains unclear. We employ a 1D sequence convolution model trained on GPCRs with established β-arrestin-binding properties.
View Article and Find Full Text PDFMolecular interactions between anorexigenic leptin and orexigenic endocannabinoids, although of great metabolic significance, are not well understood. We report here that hypothalamic STAT3 signaling in mice, initiated by physiological elevations of leptin, is diminished by agonists of the cannabinoid receptor 1 (CBR). Measurement of STAT3 activation by semi-automated confocal microscopy in cultured neurons revealed that this CBR-mediated inhibition requires both T cell protein tyrosine phosphatase (TC-PTP) and β-arrestin1 but is independent of changes in cAMP.
View Article and Find Full Text PDFBlood flow increases in arteries of the skeletal muscles involved in active work. Our aim was to investigate the gender differences as a result of adaptation to sport in the femoral arteries. Vascular reactivity and histology of animals were compared following a 12-week swimming training.
View Article and Find Full Text PDFBackground: Osteoclasts play a crucial role in the maintenance, repair, and remodeling of bones of the adult vertebral skeleton due to their bone resorption capability. Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are associated with increased activity of osteoclasts.
Objectives: Our study aimed to investigate the dynamic proteomic changes during osteoclast differentiation in healthy donors, in RA, and PsA.
Front Endocrinol (Lausanne)
February 2022
The G protein-coupled type 1 cannabinoid receptor (CBR) mediates virtually all classic cannabinoid effects, and both its agonists and antagonists hold major therapeutic potential. Heterologous expression of receptors is vital for pharmacological research, however, overexpression of these proteins may fundamentally alter their localization pattern, change the signalling partner preference and may also spark artificial clustering. Additionally, recombinant CBRs are prone to intense proteasomal degradation, which may necessitate substantial modifications, such as N-terminal truncation or signal sequence insertion, for acceptable cell surface expression.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2022
β-arrestins are partners of the G protein-coupled receptors (GPCRs), regulating their intracellular trafficking and signaling. Development of biased GPCR agonists, selectively targeting either G protein or β-arrestin pathways, are in the focus of interest due to their therapeutic potential in different pathological conditions. The CB cannabinoid receptor (CBR) is a GPCR involved in various functions in the periphery and the central nervous system.
View Article and Find Full Text PDF(1) Adeno-associated viruses (AAV) are safe and efficient gene therapy vectors with promising results in the treatment of several diseases. Extracellular vesicles (EV) are phospholipid bilayer-surrounded structures carrying several types of lipids, proteins, and nucleic acids with the ability to cross biological barriers. EV-associated AAVs might serve as new and efficient gene therapy vectors considering that they carry the benefits of both AAVs and EVs.
View Article and Find Full Text PDFComprehensive analysis of post-translation modifications (PTMs) is an important mission of proteomics. However, the consideration of PTMs increases the search space and may therefore impair the efficiency of protein identification. Using thousands of proteomic searches, we investigated the practical aspects of considering multiple PTMs in Byonic searches for the maximization of protein and peptide hits.
View Article and Find Full Text PDFVitamin D deficiency shows positive correlation to cardiovascular risk, which might be influenced by gender specific features. Our goal was to examine the effect of Vitamin D supplementation and Vitamin D deficiency in male and female rats on an important hypertension target organ, the renal artery. Female and male Wistar rats were fed with Vitamin D reduced chow for eight weeks to induce hypovitaminosis.
View Article and Find Full Text PDFReliable measurement of ligand binding to cell surface receptors is of outstanding biological and pharmacological importance. Resonance energy transfer-based assays are powerful approaches to achieve this goal, but the currently available methods are hindered by the necessity of receptor tagging, which can potentially alter ligand binding properties. Therefore, we developed a tag-free system to measure ligand‒receptor interactions in live cells using the Gaussia luciferase (GLuc) as a bioluminescence resonance energy transfer donor.
View Article and Find Full Text PDFIt was tested whether intrinsic CBR activation modifies myogenic and agonist induced contraction of intramural coronary resistance arteries of the rat. CBR protein was detected by immuno-histochemistry and by Western blot, its mRNA by qRT-PCR in their wall. Microsurgically prepared cylindrical coronary segments (∼100-150μm) developed myogenic contraction (∼20% of relaxed luminal diameter), from which a substantial relaxation (∼15%) in response to WIN55212 (a specific agonist of the CBRs) has been found.
View Article and Find Full Text PDFActivation of G protein-coupled receptors (GPCRs) can induce vasoconstriction via calcium signal-mediated and Rho-dependent pathways. Earlier reports have shown that diacylglycerol produced during calcium signal generation can be converted to an endocannabinoid, 2-arachidonoylglycerol (2-AG). Our aim was to provide evidence that GPCR signaling-induced 2-AG production and activation of vascular type1 cannabinoid receptors (CB1R) is capable of reducing agonist-induced vasoconstriction and hypertension.
View Article and Find Full Text PDFIn the vascular system angiotensin II (Ang II) causes vasoconstriction via the activation of type 1 angiotensin receptors. Earlier reports have shown that in cellular expression systems diacylglycerol produced during type 1 angiotensin receptor signaling can be converted to 2-arachidonoylglycerol, an important endocannabinoid. Because activation of CB(1) cannabinoid receptors (CB(1)R) induces vasodilation and reduces blood pressure, we have tested the hypothesis that Ang II-induced 2-arachidonoylglycerol release can modulate its vasoconstrictor action in vascular tissue.
View Article and Find Full Text PDFInitiation and termination of signaling of the type I angiotensin receptor (AT(1)-R) can lead to dynamic changes in its localization in plasma membrane microdomains. Several markers were recently developed to investigate membrane microdomains. Here, we used several YFP-labeled fusion constructs (i.
View Article and Find Full Text PDFPrevious studies have demonstrated that molecules of the Ras signaling pathway are present in intracellular compartments, including early endosomes, the endoplasmic reticulum (ER), and the Golgi, and suggested that mitogens can regulate Ras activity in these endomembranes. In this study, we investigated the effect of angiotensin II (AngII) on intracellular Ras activity in living HEK293 cells expressing angiotensin type 1 receptors (AT(1)-Rs) using newly developed bioluminescence resonance energy transfer biosensors. To investigate the subcellular localization of AngII-induced Ras activation, we targeted our probes to various intracellular compartments, such as the trans-Golgi network (TGN), the ER, and early endosomes.
View Article and Find Full Text PDF