Visualization of biomolecules in their native environment or imaging-aided understanding of more complex biomolecular processes are one of the focus areas of chemical biology research, which requires selective, often site-specific labeling of targets. This challenging task is effectively addressed by bioorthogonal chemistry tools in combination with advanced synthetic biology methods. Today, the smart combination of the elements of the bioorthogonal toolbox allows selective installation of multiple markers to selected targets, enabling multicolor or multimodal imaging of biomolecules.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2023
Photoresponsive materials offer excellent spatiotemporal control over biological processes and the emerging phototherapeutic methods are expected to have significant effects on targeted cancer therapies. Recent examples show that combination of photoactivatable approaches with bioorthogonal chemistry enhances the precision of targeted phototherapies and profound implications are foreseen particularly in the treatment of disperse/diffuse tumors. The extra level of on-target selectivity and improved spatial/temporal control considerably intensified related bioorthogonally assisted phototherapy research.
View Article and Find Full Text PDFCompounds able to simultaneously bind a biological target and be conjugated to a second specific moiety are attractive tools for the development of multi-purpose ligands useful as multi-target ligands, receptor probes or drug delivery systems, with both therapeutic and diagnostic applications. The human A adenosine receptor is a G protein-coupled receptor involved in many physio-pathological conditions, e.g.
View Article and Find Full Text PDFFluorogenic probes efficiently reduce non-specific background signals, which often results in highly improved signal-to-noise ratios. Although this implies improved resolution, fluorogenic probes in the context of super-resolution microscopy are somewhat overlooked. Several excellent reviews summarize recent developments in SRM techniques, labeling techniques or different aspects of small synthetic fluorophores, however there is no comprehensive review on fluorogenic probes suitable for super-resolution microscopy.
View Article and Find Full Text PDFThe synthesis, fluorogenic characterization, and labeling application of four tetrazine-quenched cyanine probes with emission maxima in the red-far red range is reported. Fluorescence of the cyanine-cores is quenched via through-bond-energy-transfer (TBET) exerted by a bioorthogonal tetrazine unit. Upon bioorthogonal labeling reaction with cyclooctyne tagged proteins, the quenching effect ceases, and thus the fluorescence reinstates, resulting in an increase in fluorescence intensity.
View Article and Find Full Text PDFTetrazine-bearing fluorescent labels enable site-specific tagging of proteins that are genetically manipulated with dienophile modified noncanonical amino acids. The inverse electron demand Diels-Alder reaction between the tetrazine and the dienophile fulfills the criteria of bioorthogonality allowing fluorescent labeling schemes of live cells. Here, we describe the detailed synthetic and labeling protocols of a near infrared emitting siliconrhodamine-tetrazine probe suitable for super-resolution imaging of residue-specifically engineered proteins in mammalian cells.
View Article and Find Full Text PDFHerein we present the synthesis and fluorogenic characterization of a series of double-quenched bisazide cyanine probes with emission maxima between 565 and 580 nm that can participate in covalent, two-point binding bioorthogonal tagging schemes in combination with bis-cyclooctynylated peptides. Compared to other fluorogenic cyanines, these double-quenched systems showed remarkable fluorescence intensity increase upon formation of cyclic dye-peptide conjugates. Furthermore, we also demonstrated that these bisazides are useful fluorogenic cross-linking platforms that are able to form a covalent linkage between monocyclooctynylated proteins.
View Article and Find Full Text PDFBio-orthogonal labelling schemes based on inverse-electron-demand Diels-Alder (IEDDA) cycloaddition have attracted much attention in chemical biology recently. The appealing features of this reaction, such as the fast reaction kinetics, fully bio-orthogonal nature and high selectivity, have helped chemical biologists gain deeper understanding of biochemical processes at the molecular level. Listing the components and discussing the possibilities and limitations of these reagents, we provide a recent snapshot of the field of IEDDA-based biomolecular manipulation with special focus on fluorescent modulation approaches through the use of bio-orthogonalized building blocks.
View Article and Find Full Text PDFIntroduction of bioorthogonal functionalities (e.g., trans-cyclooctene-TCO) into a protein of interest by site-specific genetic encoding of non-canonical amino acids (ncAAs) creates uniquely targetable platforms for fluorescent labeling schemes in combination with tetrazine-functionalized dyes.
View Article and Find Full Text PDFThe synthesis of a set of tetrazine-bearing fluorogenic dyes suitable for intracellular labeling of proteins in live cells is presented. The red excitability and emission properties ensure minimal autofluorescence, while through-bond energy-transfer-based fluorogenicity reduces nonspecific background fluorescence of unreacted dyes. The tetrazine motif efficiently quenches fluorescence of the phenoxazine core, which can be selectively turned on chemically upon bioorthogonal inverse-electron-demand Diels-Alder reaction with proteins modified genetically with strained trans-cyclooctenes.
View Article and Find Full Text PDFA programmable ligand display system can be used to dissect the multivalent effects of ligand binding to a membrane receptor. An antagonist of the A2A adenosine receptor, a G-protein-coupled receptor that is a drug target for neurodegenerative conditions, was displayed in 35 different multivalent configurations, and binding to A2A was determined. A theoretical model based on statistical mechanics was developed to interpret the binding data, suggesting the importance of receptor dimers.
View Article and Find Full Text PDF4-Alkyloxyimino derivatives of pyrimidine nucleotides display high potency as agonists of certain G protein-coupled P2Y receptors (P2YRs). In an effort to functionalize a P2YR agonist for fluorescent labeling, we probed two positions ( and γ-phosphate of cytidine derivatives) with various functional groups, including alkynes for click chemistry. Functionalization of extended imino substituents at the 4 position of the pyrimidine nucleobase of CDP preserved P2YR potency generally better than γ-phosphoester formation in CTP derivatives.
View Article and Find Full Text PDFVarious fluorescent nucleoside agonists of the A3 adenosine receptor (AR) were compared as high affinity probes using radioligands and flow cytometry (FCM). They contained a fluorophore linked through the C2 or N(6) position and rigid A3AR-enhancing (N)-methanocarba modification. A hydrophobic C2-(1-pyrenyl) derivative MRS5704 bound nonselectively.
View Article and Find Full Text PDFInterest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.
View Article and Find Full Text PDFThe physiological role of the A(3) adenosine receptor (AR) was explored in cardiac ischaemia, inflammatory diseases and cancer. We report a new fluorophore-conjugated human (h) A(3)AR antagonist for application to cell-based assays in ligand discovery and for receptor imaging. Fluorescent pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-ylamine (pyrazolo-triazolo-pyrimidine, PTP) and triazolo[1,5-c]quinazolin-5-yl)amine (triazolo-quinazoline, TQ) AR antagonists were compared.
View Article and Find Full Text PDFEffective syntheses of endo- and exocyclic alpha,beta-unsaturated ketones as CC dipolarophiles were carried out in the 13alpha-estrone series. The 1,3-dipolar cycloadditions of 15,16alpha,beta-unsaturated ketones of 13alpha-estrone 3-methyl and 3-benzyl ether with nitrilimines stereoselectively furnished two regioisomers of new condensed pyrazolines in a ratio of 2:1. The main product was the isomer obtained by the attack of the N-terminus of the 1,3-dipole on the carbon atom beta to the carbonyl group of the dipolarophile.
View Article and Find Full Text PDF