Publications by authors named "Eswar N"

Article Synopsis
  • Lepidopterans, like certain caterpillars, are major pests that significantly impact global crop production, prompting the need for effective pest control methods.
  • The research identifies a new family of insecticidal proteins derived from ferns, which are effective against key lepidopteran pests, particularly in maize and soybean crops.
  • The structure of these fern proteins is similar to established insecticidal proteins but unique enough that they may be beneficial for managing pests that have developed resistance to traditional proteins.
View Article and Find Full Text PDF

The broad adoption of transgenic crops has revolutionized agriculture. However, resistance to insecticidal proteins by agricultural pests poses a continuous challenge to maintaining crop productivity and new proteins are urgently needed to replace those utilized for existing transgenic traits. We identified an insecticidal membrane attack complex/perforin (MACPF) protein, Mpf2Ba1, with strong activity against the devastating coleopteran pest western corn rootworm (WCR) and a novel site of action.

View Article and Find Full Text PDF

The present work demonstrates an extremely proficient and robust study of efficient interfacial charge transfer through plasmonic Ag decorated BiO hierarchical photoanodes for the photoelectrochemical treatment of chlorinated phenols. Unique 2D flake-like BiO hierarchical nanostructures were grown onto a fluorine-doped tin oxide (FTO) substrate by a simple chemical bath deposition method using triethanolamine as complexing agent. The formation of BiO on FTO was governed by the decomposition of a nucleated bismuth-hydroxyl complex (BiO(OH)) and modification to the electrode was carried out by the deposition of Ag via a chemical reduction method using hydrazine hydrate.

View Article and Find Full Text PDF

This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-ray diffraction analysis, BET surface area analysis, diffuse reflectance and electron microscopy.

View Article and Find Full Text PDF

Cathepsin E splice variant 2 appears in a number of gastric carcinomas. Here we report detecting this variant in HeLa cells using polyclonal antibodies and biotinylated inhibitor pepstatin A. An overexpression of GFP fusion proteins of cathepsin E and its splice variant within HEK-293T cells was performed to show their localization.

View Article and Find Full Text PDF

Membrane proteins serve as cellular gatekeepers, regulators, and sensors. Prior studies have explored the functional breadth and evolution of proteins and families of particular interest, such as the diversity of transport-associated membrane protein families in prokaryotes and eukaryotes, the composition of integral membrane proteins, and family classification of all human G-protein coupled receptors. However, a comprehensive analysis of the content and evolutionary associations between membrane proteins and families in a diverse set of genomes is lacking.

View Article and Find Full Text PDF

Comparing the structures of proteins is crucial to gaining insight into protein evolution and function. Here, we align the sequences of multiple protein structures by a dynamic programming optimization of a scoring function that is a sum of an affine gap penalty and terms dependent on various sequence and structure features (SALIGN). The features include amino acid residue type, residue position, residue accessible surface area, residue secondary structure state and the conformation of a short segment centered on the residue.

View Article and Find Full Text PDF

Background: Conventional patent-based drug development incentives work badly for the developing world, where commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation with alternative R&D institutions ranging from private-public partnerships to development prizes. Despite extensive discussion, however, one of the most promising avenues-open source drug discovery-has remained elusive.

View Article and Find Full Text PDF

To study the substrate specificity of enzymes, we use the amidohydrolase and enolase superfamilies as model systems; members of these superfamilies share a common TIM barrel fold and catalyze a wide range of chemical reactions. Here, we describe a collaboration between the Enzyme Specificity Consortium (ENSPEC) and the New York SGX Research Center for Structural Genomics (NYSGXRC) that aims to maximize the structural coverage of the amidohydrolase and enolase superfamilies. Using sequence- and structure-based protein comparisons, we first selected 535 target proteins from a variety of genomes for high-throughput structure determination by X-ray crystallography; 63 of these targets were not previously annotated as superfamily members.

View Article and Find Full Text PDF

MODBASE (http://salilab.org/modbase) is a database of annotated comparative protein structure models. The models are calculated by MODPIPE, an automated modeling pipeline that relies primarily on MODELLER for fold assignment, sequence-structure alignment, model building and model assessment (http:/salilab.

View Article and Find Full Text PDF

Comparative structure models are available for two orders of magnitude more protein sequences than are experimentally determined structures. These models, however, suffer from two limitations that experimentally determined structures do not: They frequently contain significant errors, and their accuracy cannot be readily assessed. We have addressed the latter limitation by developing a protocol optimized specifically for predicting the Calpha root-mean-squared deviation (RMSD) and native overlap (NO3.

View Article and Find Full Text PDF

Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap.

View Article and Find Full Text PDF

Background: A number of studies have used protein interaction data alone for protein function prediction. Here, we introduce a computational approach for annotation of enzymes, based on the observation that similar protein sequences are more likely to perform the same function if they share similar interacting partners.

Results: The method has been tested against the PSI-BLAST program using a set of 3,890 protein sequences from which interaction data was available.

View Article and Find Full Text PDF

Functional characterization of a protein sequence is a common goal in biology, and is usually facilitated by having an accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates).

View Article and Find Full Text PDF

Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure.

View Article and Find Full Text PDF

In this paper, we present a structure of the mammalian ribosome determined at approximately 8.7 A resolution by electron cryomicroscopy and single-particle methods. A model of the ribosome was created by docking homology models of subunit rRNAs and conserved proteins into the density map.

View Article and Find Full Text PDF

Pathogens have evolved numerous strategies to infect their hosts, while hosts have evolved immune responses and other defenses to these foreign challenges. The vast majority of host-pathogen interactions involve protein-protein recognition, yet our current understanding of these interactions is limited. Here, we present and apply a computational whole-genome protocol that generates testable predictions of host-pathogen protein interactions.

View Article and Find Full Text PDF

The DBAli tools use a comprehensive set of structural alignments in the DBAli database to leverage the structural information deposited in the Protein Data Bank (PDB). These tools include (i) the DBAlit program that allows users to input the 3D coordinates of a protein structure for comparison by MAMMOTH against all chains in the PDB; (ii) the AnnoLite and AnnoLyze programs that annotate a target structure based on its stored relationships to other structures; (iii) the ModClus program that clusters structures by sequence and structure similarities; (iv) the ModDom program that identifies domains as recurrent structural fragments and (v) an implementation of the COMPARER method in the SALIGN command in MODELLER that creates a multiple structure alignment for a set of related protein structures. Thus, the DBAli tools, which are freely accessible via the World Wide Web at http://salilab.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) consists of multiple copies of approximately 30 different proteins [nucleoporins (nups)], forming a channel in the nuclear envelope that mediates macromolecular transport between the cytosol and the nucleus. With <5% of the nup residues currently available in experimentally determined structures, little is known about the detailed structure of the NPC. Here, we use a combined computational and biochemical approach to assign folds for approximately 95% of the residues in the yeast and vertebrate nups.

View Article and Find Full Text PDF

MODBASE (http://salilab.org/modbase) is a database of annotated comparative protein structure models for all available protein sequences that can be matched to at least one known protein structure. The models are calculated by MODPIPE, an automated modeling pipeline that relies on MODELLER for fold assignment, sequence-structure alignment, model building and model assessment (http:/salilab.

View Article and Find Full Text PDF

The function of an uncharacterized protein is usually inferred either from its homology to, or its interactions with, characterized proteins. Here, we use both sequence similarity and protein interactions to identify relationships between remotely related protein sequences. We rely on the fact that homologous sequences share similar interactions, and, therefore, the set of interacting partners of the partners of a given protein is enriched by its homologs.

View Article and Find Full Text PDF

Motivation: The NCBI dbSNP database lists over 9 million single nucleotide polymorphisms (SNPs) in the human genome, but currently contains limited annotation information. SNPs that result in amino acid residue changes (nsSNPs) are of critical importance in variation between individuals, including disease and drug sensitivity.

Results: We have developed LS-SNP, a genomic scale software pipeline to annotate nsSNPs.

View Article and Find Full Text PDF

Structural genomics has as its goal the provision of structural information for all possible ORF sequences through a combination of experimental and computational approaches. The access to genome sequences and cloning resources from an ever-widening array of organisms is driving high-throughput structural studies by the New York Structural Genomics Research Consortium. In this report, we outline the progress of the Consortium in establishing its pipeline for structural genomics, and some of the experimental and bioinformatics efforts leading to structural annotation of proteins.

View Article and Find Full Text PDF

MODBASE (http://salilab.org/modbase) is a relational database of annotated comparative protein structure models for all available protein sequences matched to at least one known protein structure. The models are calculated by MODPIPE, an automated modeling pipeline that relies on the MODELLER package for fold assignment, sequence-structure alignment, model building and model assessment (http:/salilab.

View Article and Find Full Text PDF