J Am Chem Soc
August 2017
A method is described for the joining of two α-lithiated C(sp) stereocenters efficiently and with retention of configuration. The key step involves the effective removal of two electrons from a chiral organocuprate RCuLi, by i-propyl 2,4-dinitrobenzoate to form a Cu(III) complex that undergoes at -90 °C accelerated reductive elimination enantioselectively and exclusively without the formation of free radicals.
View Article and Find Full Text PDFThe coordination of chiral ligands to Lewis acid metal derivatives, a useful strategy for enantioselective, electrophilic catalysis, generally leads to a lower level of catalytic activity than that of the original uncomplexed compound. Activation by further attachment of a proton or strong Lewis acid to the complex provides a way to overcome the deactivating effect of a chiral ligand. The research described herein has demonstrated that further enhancement of catalytic activity is possible by the judicious placement of fluorine substituents in the chiral ligand.
View Article and Find Full Text PDFA number of diseases can result from abnormal gene expression. One of the approaches for treating such diseases is gene therapy to inhibit expression of a particular gene in a specific cell population by RNA interference. Use of efficient delivery vehicles increases the safety and success of gene therapy.
View Article and Find Full Text PDFA concise and highly stereoselective total synthesis of manzacidin B and its congeners has been developed following chelation-controlled syn-epoxidation and Lewis acid catalyzed intramolecular regioselective epoxide ring opening to generate the quarternary amine center. Elaboration of the triol moiety to the target molecule was achieved in good overall yield, representing practical total syntheses of manzacidin B and its congeners. From the XRD, NMR, and analytical data, the correct structure of natural manzacidin B, (4R,5R,6R)-6, was confirmed.
View Article and Find Full Text PDFHighly stereoselective total syntheses of polyrhacitide A and epi-cryptocaryolone have been achieved in 11 steps with high overall yield of 24% and 28%, respectively, following a recently developed strategy for the construction of trans-2,6-disubstituted-3,4-dihydropyrans. In this report, the versatility of iodo-cyclization for the total syntheses of polyrhacitide A and epi-cryptocaryolone is demonstrated.
View Article and Find Full Text PDF