Ageing leads to a gradual deterioration of the organs, with the brain being particularly susceptible, often leading to neurodegeneration. This process includes well-known changes such as tau hyperphosphorylation and beta-amyloid deposition, which are commonly associated with neurodegenerative diseases but are also present in ageing. These structures are triggered by earlier cellular changes such as energy depletion and impaired protein synthesis, both of which are essential for cell function.
View Article and Find Full Text PDFWater pollution caused by dyes is a significant environmental issue, necessitating the development of effective, cost-efficient decolorization methods suitable for industrial use. In this study, a Chitosan-Fe polymeric gel was synthesized, characterized, and tested for removing the azo dye Direct Red 83:1 from water. The polymeric magnetic chitosan was analyzed using various techniques: Field Emission Scanning Electron Microscopy (FE-SEM) revealed a porous structure, Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) demonstrated the thermal stability, Infrared Spectrophotometry (IR) indicated the successful coordination of iron at the C3 position, and X-ray Powder Diffraction (XRD) confirmed the crystalline nature of the polymeric structure.
View Article and Find Full Text PDFInt J Mol Sci
February 2024
The significant environmental issue of water pollution caused by emerging contaminants underscores the imperative for developing novel cleanup methods that are efficient, economically viable, and that are intended to operate at high capacity and under continuous flows at the industrial scale. This study shows the results of the operational design to build a prototype for the retention at lab scale of pollutant residues in water by using as adsorbent material, insoluble polymers prepared by β-cyclodextrin and epichlorohydrin as a cross-linking agent. Laboratory in-batch tests were run to find out the adsorbent performances against furosemide and hydrochlorothiazide as pollutant models.
View Article and Find Full Text PDFIn pancreatic ductal adenocarcinoma (PDAC), metabolic rewiring and resistance to standard therapy are closely associated. PDAC cells show enormous requirements for glucose-derived citrate, the first rate-limiting metabolite in the synthesis of new lipids. Both the expression and activity of citrate synthase (CS) are extraordinarily upregulated in PDAC.
View Article and Find Full Text PDFFoods
June 2023
This study introduces an effective solution to enhance the postharvest preservation of broccoli, a vegetable highly sensitive to ethylene, a hormone produced by climacteric fruits such as tomatoes. The proposed method involves a triple combination of ethylene elimination techniques: potassium permanganate (KMnO) filters combined with ultraviolet radiation (UV-C) and titanium oxide (TiO), along with a continuous airflow to facilitate contact between ethylene and these oxidizing agents. The effectiveness of this approach was evaluated using various analytical techniques, including measurements of weight, soluble solids content, total acidity, maturity index, color, chlorophyll, total phenolic compounds, and sensory analysis conducted by experts.
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic made evident that there are only a few drugs against coronavirus. Here we aimed to identify a cost-effective antiviral with broad spectrum activity and high safety profile. Starting from a list of 116 drug candidates, we used molecular modelling tools to rank the 44 most promising inhibitors.
View Article and Find Full Text PDFTransgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced.
View Article and Find Full Text PDFPharmaceutics
November 2022
The aim of this study was to obtain solid carvacrol-cyclodextrin (CD) complexes for use in the pharmaceutical industry. To this end, the complexation of carvacrol at different pH values was studied in detail, to determine the type of CD and the reaction environment that supported the highest amount of encapsulated carvacrol. Evidence of the capability of hydroxypropyl-β-cyclodextrins (HP-β-CD) to form inclusion complexes with carvacrol (K = 5042 ± 176 L mol) and more high complexation efficiency (2.
View Article and Find Full Text PDFConstitutive heterochromatin is responsible for genome repression of DNA enriched in repetitive sequences, telomeres, and centromeres. During physiological and pathological premature aging, heterochromatin homeostasis is profoundly compromised. Here, we showed that () RNA accumulation was an early event in both typical and atypical human progeroid syndromes.
View Article and Find Full Text PDFIt is widely believed that cellular senescence plays a critical role in both aging and cancer, and that senescence is a fundamental, permanent growth arrest that somatic cells cannot avoid. Here we show that Myc plays an important role in self-renewal of esophageal epithelial cells, contributing to their resistance to cellular senescence. Myc is homogeneously expressed in basal cells of the esophageal epithelium and Myc positively regulates their self-renewal by maintaining their undifferentiated state.
View Article and Find Full Text PDFPartial reprogramming by expression of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) for short periods of time restores a youthful epigenetic signature to aging cells and extends the life span of a premature aging mouse model. However, the effects of longer-term partial reprogramming in physiologically aging wild-type mice are unknown. Here, we performed various long-term partial reprogramming regimens, including different onset timings, during physiological aging.
View Article and Find Full Text PDFUsing cyclodextrins (CDs) in packaging technologies helps volatile or bioactive molecules improve their solubility, to guarantee the homogeneous distribution of the complexed molecules, protecting them from volatilization, oxidation, and temperature fluctuations when they are associated with polymeric matrices. This technology is also suitable for the controlled release of active substances and allows the exploration of their association with biodegradable polymer targeting to reduce the negative environmental impacts of food packaging. Here, we present a fresh look at the current status of and future prospects regarding the different strategies used to associate cyclodextrins and their derivatives with polymeric matrices to fabricate sustainable and biodegradable active food packaging (AFP).
View Article and Find Full Text PDFHuman pluripotent stem cell (hPSC)-derived pancreatic β cells are an attractive cell source for treating diabetes. However, current derivation methods remain inefficient, heterogeneous, and cell line dependent. To address these issues, we first devised a strategy to efficiently cluster hPSC-derived pancreatic progenitors into 3D structures.
View Article and Find Full Text PDFShort-term, systemic expression of the Yamanaka reprogramming factors (Oct-3/4, Sox2, Klf4 and c-Myc [OSKM]) has been shown to rejuvenate aging cells and promote tissue regeneration in vivo. However, the mechanisms by which OSKM promotes tissue regeneration are unknown. In this work, we focus on a specific tissue and demonstrate that local expression of OSKM, specifically in myofibers, induces the activation of muscle stem cells or satellite cells (SCs), which accelerates muscle regeneration in young mice.
View Article and Find Full Text PDFBlackberries and raspberries are highly perishable and fragile products, which limits their shelf life. The effect of biodegradable active packaging of blackberries and raspberries containing 2.5% and 5.
View Article and Find Full Text PDFThe advent of cellular reprogramming technology converting somatic cells into induced pluripotent stem cells (iPSCs) has revolutionized our understandings of neurodegenerative diseases that are otherwise hard to access and model. Multiple Sclerosis (MS) is a chronic demyelinating, inflammatory disease of central nervous system eventually causing neuronal death and accompanied disabilities. Here, we report the generation of several relapsing-remitting MS (RRMS) and primary progressive MS (PPMS) iPSC lines from MS patients along with their age matched healthy controls from peripheral blood mononuclear cells (PBMC).
View Article and Find Full Text PDFInterspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo.
View Article and Find Full Text PDFBackground: Strategies for monitoring the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are crucial for combating the pandemic. Detection and mutation surveillance of SARS-CoV-2 and other respiratory viruses require separate and complex workflows that rely on highly specialized facilities, personnel, and reagents. To date, no method can rapidly diagnose multiple viral infections and determine variants in a high-throughput manner.
View Article and Find Full Text PDFThe emergence of the SARS-CoV-2 infection and its potential transmission through touching surfaces in clinical environments have impelled the use of conventional and novel methods of disinfection to prevent its spreading. Among the latter, pulsed light may be an effective, non-chemical decontamination alternative. Pulsed light technology inactivates microorganisms and viruses by using high intensity polychromatic light pulses, which degrades nucleic acids and proteins.
View Article and Find Full Text PDF