Tomato is a major global crop. However, its production is limited by Botrytis cinerea. Due to the toxicity of postharvest pesticide application, alternative control methods such as priming are being investigated.
View Article and Find Full Text PDFAnthropogenic emissions have caused atmospheric carbon dioxide (CO2) concentrations to double since the industrial revolution. Although this could benefit plant growth from the 'CO2 fertilisation' effect, recent studies report conflicting impacts of elevated CO2 (eCO2) on plant-pathogen interactions. Fungal pathogens are the leading cause of plant disease.
View Article and Find Full Text PDFElevated CO2 (eCO2) is a determinant factor of climate change and is known to alter plant processes such as physiology, growth and resistance to pathogens. Quercus robur, a tree species integrated in most forest regeneration strategies, shows high vulnerability to powdery mildew (PM) disease at the seedling stage. PM is present in most oak forests and it is considered a bottleneck for oak woodland regeneration.
View Article and Find Full Text PDFAbscisic acid (ABA) is a plant hormone well known to regulate abiotic stress responses. ABA is also recognised for its role in biotic defence, but there is currently a lack of consensus on whether it plays a positive or negative role. Here, we used supervised machine learning to analyse experimental observations on the defensive role of ABA to identify the most influential factors determining disease phenotypes.
View Article and Find Full Text PDFPlants have proficient tools that allow them to survive interactions with pathogens. Upon attack, they respond with specific countermeasures, which are controlled by the immune system. However, defences can fail and this failure exposes plants to fast-spreading devastation.
View Article and Find Full Text PDFExposure of plants to stress conditions or to certain chemical elicitors can establish a primed state, whereby responses to future stress encounters are enhanced. Stress priming can be long-lasting and likely involves epigenetic regulation of stress-responsive gene expression. However, the molecular events underlying priming are not well understood.
View Article and Find Full Text PDFTo be protected from biological threats, plants have evolved an immune system comprising constitutive and inducible defenses. For example, upon perception of certain stimuli, plants can develop a conditioned state of enhanced defensive capacity against upcoming pathogens and pests, resulting in a phenotype called 'induced resistance' (IR). To tackle the confusing lexicon currently used in the IR field, we propose a widely applicable code of practice concerning the terminology and description of IR phenotypes using two main phenotypical aspects: local versus systemic resistance, and direct versus primed defense responses.
View Article and Find Full Text PDFExternal and internal signals can prime the plant immune system for a faster and/or stronger response to pathogen attack. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces broad-spectrum disease resistance in plants. BABA perception in Arabidopsis is mediated by the aspartyl tRNA synthetase IBI1, which activates priming of multiple immune responses, including callose-associated cell wall defenses that are under control by abscisic acid (ABA).
View Article and Find Full Text PDFTomato is a major crop suffering substantial yield losses from diseases, as fruit decay at a postharvest level can claim up to 50% of the total production worldwide. Due to the environmental risks of fungicides, there is an increasing interest in exploiting plant immunity through priming, which is an adaptive strategy that improves plant defensive capacity by stimulating induced mechanisms. Broad-spectrum defence priming can be triggered by the compound ß-aminobutyric acid (BABA).
View Article and Find Full Text PDFPlant fungal pathogens place considerable strain on agricultural productivity and threaten global food security. In recent decades, advances in crop breeding, farming practice and the agrochemical industry have allowed crop yields to keep pace with food demand. In this opinion article, we speculate on which recent technological advances will allow us to maintain this situation into the future.
View Article and Find Full Text PDFProgeny of heavily diseased plants develop transgenerational acquired resistance (TAR). In Arabidopsis, TAR can be transmitted over one stress-free generation. Although DNA methylation has been implicated in the regulation of TAR, the relationship between TAR and global DNA methylation remains unknown.
View Article and Find Full Text PDFHumanity faces the challenge of having to increase food production to feed an exponentially growing world population, while crop diseases reduce yields to levels that we can no longer afford. Besides, a significant amount of waste is produced after fruit harvest. Fruit decay due to diseases at a post-harvest level can claim up to 50% of the total production worldwide.
View Article and Find Full Text PDFβ-Aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth.
View Article and Find Full Text PDFBackground: An ethical, informed consent process requires that potential participants understand the study, their rights, and the risks and benefits. Yet, despite strategies to improve communication, many participants still lack understanding of potential risks and benefits. Investigating attitudes and practices of research nurses can identify ways to improve the informed consent process.
View Article and Find Full Text PDFMultiple studies have documented major limitations in the informed consent process for the recruitment of clinical research participants. One challenging aspect of this process is successful communication of risks and benefits to potential research participants. This study explored the opinions and attitudes of informed consent experts about conveying risks and benefits to inform the development of a survey about the perspectives of research nurses who are responsible for obtaining informed consent for clinical trials.
View Article and Find Full Text PDFPriming is an adaptive strategy that improves the defensive capacity of plants. This phenomenon is marked by an enhanced activation of induced defense mechanisms. Stimuli from pathogens, beneficial microbes, or arthropods, as well as chemicals and abiotic cues, can trigger the establishment of priming by acting as warning signals.
View Article and Find Full Text PDFResistance-inducing chemicals can offer broad-spectrum disease protection in crops, but can also affect plant growth and interactions with plant-beneficial microbes. We have evaluated different application methods of β-aminobutyric acid (BABA) and jasmonic acid (JA) for long-lasting induced resistance in tomato against Botrytis cinerea. In addition, we have studied nontarget effects on plant growth and root colonization by arbuscular mycorrhizal fungi (AMF).
View Article and Find Full Text PDFPriming of defense increases the responsiveness of the plant immune system and can provide broad-spectrum protection against disease. Recent evidence suggests that priming of defense can be inherited epigenetically to following generations. However, the mechanisms of long-lasting defense priming within one generation remains poorly understood.
View Article and Find Full Text PDFSpecific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense activator.
View Article and Find Full Text PDFMol Plant Microbe Interact
November 2013
Selected stimuli can prime the plant immune system for a faster and stronger defense reaction to pathogen attack. Pretreatment of Arabidopsis with the chemical agent β-aminobutyric acid (BABA) augmented H2O2 and callose production after induction with the pathogen-associated molecular pattern (PAMP) chitosan, or inoculation with the necrotrophic fungus Plectosphaerella cucumerina. However, BABA failed to prime H2O2 and callose production after challenge with the bacterial PAMP Flg22.
View Article and Find Full Text PDFPlant Signal Behav
June 2012
Progeny from diseased Arabidopsis shows enhanced resistance, which is associated with priming of defense genes. This transgenerational systemic acquired resistance (SAR) is effective against biotrophic pathogens, such as the downy mildew pathogen Hyaloperonospora arabidopsidis. In this study, we have examined mutants in RNA-directed DNA methylation (RdDM) for transgenerational SAR.
View Article and Find Full Text PDFAn attack of plants by pathogens or treatment with certain resistance-inducing compounds can lead to the establishment of a unique primed state of defense. Primed plants show enhanced defense reactions upon further challenge with biotic or abiotic stress. Here, we report that the primed state in Arabidopsis (Arabidopsis thaliana) is still functional in the next generation without additional treatment.
View Article and Find Full Text PDF