Amplification and overexpression of the SOX2 oncogene represent a hallmark of squamous cancers originating from diverse tissue types. Here, we find that squamous cancers selectively amplify a 3' noncoding region together with SOX2, which harbors squamous cancer-specific chromatin accessible regions. We identify a single enhancer e1 that predominantly drives SOX2 expression.
View Article and Find Full Text PDFActivation of transcription factors is a key driver event in cancer. We and others have recently reported that the Krüppel-like transcription factor KLF5 is activated in multiple epithelial cancer types including squamous cancer and gastrointestinal adenocarcinoma, yet the functional consequences and the underlying mechanisms of this activation remain largely unknown. Here we demonstrate that activation of KLF5 results in strongly selective KLF5 dependency for these cancer types.
View Article and Find Full Text PDFGenomic analysis of lung adenocarcinomas has revealed that the gene, which encodes a heterodimeric partner of the MYC-interacting protein MAX, is significantly mutated or deleted in lung adenocarcinomas. Most of the mutations are loss of function for MGA, suggesting that MGA may act as a tumor suppressor. Here, we characterize both the molecular and cellular role of MGA in lung adenocarcinomas and illustrate its functional relevance in the MYC pathway.
View Article and Find Full Text PDF