Publications by authors named "Esti Yeger-Lotem"

Pathogenic variants underlying Mendelian diseases often disrupt the normal physiology of a few tissues and organs. However, variant effect prediction tools that aim to identify pathogenic variants are typically oblivious to tissue contexts. Here we report a machine-learning framework, denoted "Tissue Risk Assessment of Causality by Expression for variants" (TRACEvar, https://netbio.

View Article and Find Full Text PDF

Deconvolution algorithms mostly rely on single-cell RNA-sequencing (scRNA-seq) data applied onto bulk RNA-sequencing (bulk RNA-seq) to estimate tissues' cell-type composition, with performance accuracy validated on deposited databases. Adipose tissues' cellular composition is highly variable, and adipocytes can only be captured by single-nucleus RNA-sequencing (snRNA-seq). Here we report the development of sNucConv, a Scaden deep-learning-based deconvolution tool, trained using 5 hSAT and 7 hVAT snRNA-seq-based data corrected by (i) snRNA-seq/bulk RNA-seq highly correlated genes and (ii) individual cell-type regression models.

View Article and Find Full Text PDF

Background: Aneuploidy, an abnormal number of chromosomes within a cell, is a hallmark of cancer. Patterns of aneuploidy differ across cancers, yet are similar in cancers affecting closely related tissues. The selection pressures underlying aneuploidy patterns are not fully understood, hindering our understanding of cancer development and progression.

View Article and Find Full Text PDF

Mendelian diseases tend to manifest clinically in certain tissues, yet their affected cell types typically remain elusive. Single-cell expression studies showed that overexpression of disease-associated genes may point to the affected cell types. Here, we developed a method that infers disease-affected cell types from the preferential expression of disease-associated genes in cell types (PrEDiCT).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a detailed cellular map of the aging frontal cortex using single-nucleus RNA sequencing from 24 individuals to understand cell interactions in Alzheimer's disease (AD).
  • The study identified various cell populations linked to AD, such as a specific type of inhibitory neuron and different states of oligodendrocytes, and highlighted changes in two distinct multicellular communities in AD.
  • By analyzing these cellular changes, the research aims to uncover how alterations contribute to cognitive decline, laying the groundwork for future studies on the cellular environments related to AD and dementia.
View Article and Find Full Text PDF

How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed "Tissue Risk Assessment of Causality by Expression" (TRACE), a machine learning approach to predict genes that underlie tissue-selective diseases and selectivity-related features. TRACE utilized 4,744 biologically interpretable tissue-specific gene features that were inferred from heterogeneous omics datasets.

View Article and Find Full Text PDF

The distinct functions and phenotypes of human tissues and cells derive from the activity of biological processes that varies in a context-dependent manner. Here, we present the Process Activity (ProAct) webserver that estimates the preferential activity of biological processes in tissues, cells, and other contexts. Users can upload a differential gene expression matrix measured across contexts or cells, or use a built-in matrix of differential gene expression in 34 human tissues.

View Article and Find Full Text PDF

Tissue contexts are extremely valuable when studying protein functions and their associated phenotypes. Recently, the study of proteins in tissue contexts was greatly facilitated by the availability of thousands of tissue transcriptomes. To provide access to these data we developed the TissueNet integrative database that displays protein-protein interactions (PPIs) in tissue contexts.

View Article and Find Full Text PDF

Hereditary diseases tend to manifest clinically in few selected tissues. Knowledge of those tissues is important for better understanding of disease mechanisms, which often remain elusive. However, information on the tissues inflicted by each disease is not easily obtainable.

View Article and Find Full Text PDF

Motivation: The distinct functionalities of human tissues and cell types underlie complex phenotype-genotype relationships, yet often remain elusive. Harnessing the multitude of bulk and single-cell human transcriptomes while focusing on processes can help reveal these distinct functionalities.

Results: The Tissue-Process Activity (TiPA) method aims to identify processes that are preferentially active or under-expressed in specific contexts, by comparing the expression levels of process genes between contexts.

View Article and Find Full Text PDF

Approximately 40% of human messenger RNAs (mRNAs) contain upstream open reading frames (uORFs) in their 5' untranslated regions. Some of these uORF sequences, thought to attenuate scanning ribosomes or lead to mRNA degradation, were recently shown to be translated, although the function of the encoded peptides remains unknown. Here, we show a uORF-encoded peptide that exhibits kinase inhibitory functions.

View Article and Find Full Text PDF

One of the critical events that regulates muscle cell differentiation is the replacement of the lamin B receptor (LBR)-tether with the lamin A/C (LMNA)-tether to remodel transcription and induce differentiation-specific genes. Here, we report that localization and activity of the LBR-tether are crucially dependent on the muscle-specific chaperone HSPB3 and that depletion of HSPB3 prevents muscle cell differentiation. We further show that HSPB3 binds to LBR in the nucleoplasm and maintains it in a dynamic state, thus promoting the transcription of myogenic genes, including the genes to remodel the extracellular matrix.

View Article and Find Full Text PDF

The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements.

View Article and Find Full Text PDF

Hereditary diseases and complex traits often manifest in specific tissues, whereas their causal genes are expressed in many tissues that remain unaffected. Among the mechanisms that have been suggested for this enigmatic phenomenon is dosage-sensitive compensation by paralogs of causal genes. Accordingly, tissue-selectivity stems from dosage imbalance between causal genes and paralogs that occurs particularly in disease-susceptible tissues.

View Article and Find Full Text PDF

Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships. Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies.

View Article and Find Full Text PDF

Motivation: Differential network analysis, designed to highlight network changes between conditions, is an important paradigm in network biology. However, differential network analysis methods have been typically designed to compare between two conditions and were rarely applied to multiple protein interaction networks (interactomes). Importantly, large-scale benchmarks for their evaluation have been lacking.

View Article and Find Full Text PDF

Hundreds of heritable traits and diseases that are caused by germline aberrations in ubiquitously expressed genes manifest in a remarkably limited number of cell types and tissues across the body. Unravelling mechanisms that govern their tissue-specific manifestations is critical for our understanding of disease aetiologies and may direct efforts to develop treatments. Owing to recent advances in high-throughput technologies and open resources, data and tools are now available to approach this enigmatic phenomenon at large scales, both computationally and experimentally.

View Article and Find Full Text PDF

Age-associated changes in CD4 T-cell functionality have been linked to chronic inflammation and decreased immunity. However, a detailed characterization of CD4 T cell phenotypes that could explain these dysregulated functional properties is lacking. We used single-cell RNA sequencing and multidimensional protein analyses to profile thousands of CD4 T cells obtained from young and old mice.

View Article and Find Full Text PDF

ResponseNet v.3 is an enhanced version of ResponseNet, a web server that is designed to highlight signaling and regulatory pathways connecting user-defined proteins and genes by using the ResponseNet network optimization approach (http://netbio.bgu.

View Article and Find Full Text PDF

Motivation: The effectiveness of drugs tends to vary between patients. One of the well-known reasons for this phenomenon is genetic polymorphisms in drug target genes among patients. Here, we propose that differences in expression levels of drug target genes across individuals can also contribute to this phenomenon.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis.

View Article and Find Full Text PDF

A longstanding puzzle in human genetics is what limits the clinical manifestation of hundreds of hereditary diseases to certain tissues, while their causal genes are expressed throughout the human body. A general conception is that tissue-selective disease phenotypes emerge when masking factors operate in unaffected tissues, but are specifically absent or insufficient in disease-manifesting tissues. Although this conception has critical impact on the understanding of disease manifestation, it was never challenged in a systematic manner across a variety of hereditary diseases and affected tissues.

View Article and Find Full Text PDF

RSRC1, whose polymorphism is associated with altered brain function in schizophrenia, is a member of the serine and arginine rich-related protein family. Through homozygosity mapping and whole exome sequencing we show that RSRC1 mutation causes an autosomal recessive syndrome of intellectual disability, aberrant behaviour, hypotonia and mild facial dysmorphism with normal brain MRI. Further, we show that RSRC1 is ubiquitously expressed, and that the RSRC1 mutation triggers nonsense-mediated mRNA decay of the RSRC1 transcript in patients' fibroblasts.

View Article and Find Full Text PDF

DifferentialNet is a novel database that provides users with differential interactome analysis of human tissues (http://netbio.bgu.ac.

View Article and Find Full Text PDF