Publications by authors named "Esther van de Kerkhof"

The chemical modification 2'-O-methyl of nucleosides is often used to increase siRNA stability towards nuclease activities. However, the metabolic fate of modified nucleosides remains unclear. Therefore, the aim of this study was to determine the mass balance, pharmacokinetic, and absorption, distribution, metabolism, and excretion (ADME)-properties of tritium-labeled 2'-O-methyluridine, following a single intravenous dose to male CD-1 mice.

View Article and Find Full Text PDF

Absorption, distribution, metabolism, and excretion properties of a small interfering RNA (siRNA) formulated in a lipid nanoparticle (LNP) vehicle were determined in male CD-1 mice following a single intravenous administration of LNP-formulated [(3)H]-SSB siRNA, at a target dose of 2.5 mg/kg. Tissue distribution of the [(3)H]-SSB siRNA was determined using quantitative whole-body autoradiography, and the biostability was determined by both liquid chromatography mass spectrometry (LC-MS) with radiodetection and reverse-transcriptase polymerase chain reaction techniques.

View Article and Find Full Text PDF

Efficient tissue-specific delivery is a crucial factor in the successful development of therapeutic oligonucleotides. Screening for novel delivery methods with unique tissue-homing properties requires a rapid, sensitive, flexible and unbiased technique able to visualize the in vivo biodistribution of these oligonucleotides. Here, we present whole body scanning PCR, a platform that relies on the local extraction of tissues from a mouse whole body section followed by the conversion of target-specific qPCR signals into an image.

View Article and Find Full Text PDF

Absorption, distribution, metabolism, and excretion properties of two unformulated model short interfering RNA (siRNAs) were determined using a single internal [(3)H]-radiolabeling procedure, in which the full-length oligonucleotides were radiolabeled by Br/(3)H -exchange. Tissue distribution, excretion, and mass balance of radioactivity were investigated in male CD-1 mice after a single intravenous administration of the [(3)H]siRNAs, at a target dose level of 5 mg/kg. Quantitative whole-body autoradiography and liquid scintillation counting techniques were used to determine tissue distribution.

View Article and Find Full Text PDF

Precision-cut tissue slices (PCTS) are viable ex vivo explants of tissue with a reproducible, well defined thickness. They represent a mini-model of the organ under study and contain all cells of the tissue in their natural environment, leaving intercellular and cell-matrix interactions intact, and are therefore highly appropriate for studying multicellular processes. PCTS are mainly used to study the metabolism and toxicity of xenobiotics, but they are suitable for many other purposes.

View Article and Find Full Text PDF

Induction of drug enzyme activity in the intestine can strongly determine plasma levels of drugs. It is therefore important to predict drug-drug interactions in human intestine in vitro. We evaluated the applicability of human intestinal precision-cut slices for induction studies in vitro.

View Article and Find Full Text PDF

Although the liver has long been thought to play the major role in drug metabolism, also the metabolic capacity of the intestine is more and more recognized. In vivo studies eventually pointed out not only the significance of first-pass metabolism by the intestinal wall for the bioavailability of several compounds, but also the relevance of transporters in this process. Only a few methods are available to study drug metabolism in vivo or in situ and with most of these methods it remains difficult to discriminate between the contribution of liver and extrahepatic tissues.

View Article and Find Full Text PDF

Predictive in vitro methods to investigate drug metabolism in the human intestine using intact tissue are of high importance. Therefore, we studied the metabolic activity of human small intestinal and colon slices and compared it with the metabolic activity of the same human intestinal segments using the Ussing chamber technique. The metabolic activity was evaluated using substrates to both phase I and phase II reactions: testosterone, 7-hydroxycoumarin (7HC), and a mixture of cytochrome P450 (P450) substrates (midazolam, diclofenac, coumarin, and bufuralol).

View Article and Find Full Text PDF

Tissue slices have been shown to be a valuable tool to predict metabolism of novel drugs. However, besides the numerous advantages of their use for this purpose, some potential drawbacks also exist, including reported poor penetration of drugs into the inner cell layers of slices and loss of metabolic capacity during prolonged incubation, leading to underprediction of metabolic clearance. In the present study, we empirically identified (and quantified) sources of underprediction using rat tissue slices of lung, intestine, kidney, and liver and found that thin liver slices (+/-100 mum) metabolized model substrates (7-hydroxycoumarin, testosterone, warfarin, 7-ethoxycoumarin, midazolam, haloperidol, and quinidine) as rapidly as isolated hepatocytes.

View Article and Find Full Text PDF

The aim of this study was to characterize rat small intestinal and colon tissue slices as a tool to study intestinal metabolism and to investigate gradients of drug metabolism along the intestinal tract as well as drug-induced inhibition and induction of biotransformation. Tissue morphology and the intestinal mucus layer remained intact in small intestinal and colon slices during 3 h of incubation, while alkaline phosphatase was retained and the rate of metabolism of three model compounds (7-hydroxycoumarin, 7-ethoxycoumarin, and testosterone) appeared constant. Phase I and phase II metabolic gradients, decreasing from stomach toward colon were shown to be clearly different for the model compounds used.

View Article and Find Full Text PDF

Introduction: A new technique was developed to prepare precision-cut slices from small intestine and colon with the object of studying the biotransformation of drugs in these organs.

Methods: Rat intestinal slices were prepared in two different ways. In the first method, slices were punched out of the small intestine.

View Article and Find Full Text PDF