Publications by authors named "Esther Yakir"

The use of essential oils derived from the camphor tree to repel mosquitoes is an ancient practice that originated in Southeast Asia and gradually spread to China and across Europe via the Maritime Silk Road. The olfactory mechanisms by which these oils elicit avoidance behavior are unclear. Here we show that plant bicyclic monoterpenoids and borneol specifically activate a neural pathway that originates in the orphan olfactory receptor neuron of the capitate peg sensillum in the maxillary palp, and projects to the mediodorsal glomerulus 3 in the antennal lobe.

View Article and Find Full Text PDF

In insects, specialized feeding on the phloem sap (containing mainly the sugar sucrose) has evolved only in some hemipteran lineages. This feeding behavior requires an ability to locate feeding sites buried deeply within the plant tissue. To determine the molecular mechanism involved, we hypothesized that the phloem-feeding whitefly relies on gustatory receptor (GR)-mediated sugar sensing.

View Article and Find Full Text PDF

Background: Mosquitoes are responsible for disease transmission worldwide. They possess the ability to discriminate between different ecological resources, including nectar sources, animal hosts and oviposition sites, a feature mediated by their olfactory system. Insect repellents, such as N,N-diethyl-meta-toluamide (also called DEET), have been shown to activate and inhibit mosquito odorant receptors, resulting in behavioral modulation.

View Article and Find Full Text PDF

Indole-sensitive odorant receptors or indolORs belong to a mosquito-specific expansion as ancient as the Culicidae lineage. Brachyceran flies appeared to lack representative members of this group despite the importance of indolics in this important group of dipterans. To explore whether indolORs occur in other brachyceran species, we searched for candidate indolORs in Drosophila melanogaster.

View Article and Find Full Text PDF

Odorant-dependent behaviors in insects are triggered by the binding of odorant ligands to the variable subunits of heteromeric olfactory receptors. Previous studies have shown, however, that specific odor binding to ORco, the common subunit of odorant receptor heteromers, may allosterically alter olfactory receptor function and profoundly affect subsequent behavioral responses. Using an insect cell-based screening platform, we identified and characterized several antagonists of the odorant receptor coreceptor of the African malaria vector Anopheles gambiae (AgamORco) in a small collection of natural volatile organic compounds.

View Article and Find Full Text PDF

Controlling Ae. aegypti populations and the prevention of mosquito bites includes the development of monitoring, repelling and attract-and-kill strategies that are based on understanding the chemical ecology of these pests. Olfactory-mediated attraction to mammals has recently been linked to the mosquito Aedes aegypti odorant receptor Or4, which is activated by animal-released 6-Methyl-5-hepten-2-one (sulcatone).

View Article and Find Full Text PDF

The conservation of the mosquito indolergic receptors across the Culicinae and Anophelinae mosquito lineages, which spans 200 million years of evolution, is a testament to the central role of indolic compounds in the biology of these insects. Indole and skatole have been associated with the detection of oviposition sites and animal hosts. To evaluate the potential ecological role of these two compounds, we have used a pharmacological approach to characterize homologs of the indolergic receptors Or2 and Or10 in the non-hematophagous elephant mosquito Toxorhynchites amboinensis.

View Article and Find Full Text PDF

Mosquitoes exhibit highly diverse and fast evolving odorant receptors (ORs). The indole-sensitive OR gene clade, comprised of and is a notable exception on account of its conservation in both mosquito subfamilies. This group of paralogous genes exhibits a complex developmental expression pattern in : is expressed in both adults and larvae, is adult-specific and a third member named is larva-specific.

View Article and Find Full Text PDF

Background: While the role of ethylene in fruit ripening has been widely studied, the contributions of additional plant hormones are less clear. Here we examined the interactions between the transcription factor MaMADS2-box which plays a major role in banana fruit ripening and hormonal regulation. Specifically, we used MaMADS2 repressed lines in transcriptome and hormonal analyses throughout ripening and assessed hormone and gene expression perturbations as compared to wild-type (WT) control fruit.

View Article and Find Full Text PDF

Olfaction is a key insect adaptation to a wide range of habitats. In the last thirty years, the detection of octenol by blood-feeding insects has been primarily understood in the context of animal host-seeking. The recent discovery of a conserved octenol receptor gene in the strictly nectar-feeding elephant mosquito Toxorhynchites amboinensis (TaOr8) suggests a different biological role.

View Article and Find Full Text PDF

Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening.

View Article and Find Full Text PDF

The circadian (~24 h) clock has an enormous influence on the biology of plants and controls a plethora of processes including growth, photosynthesis, photoperiodic flowering and transcription of more than 30% of the genome. The oscillator mechanism that generates these circadian rhythms consists of interlocking feedback loops. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) is a single MYB-transcription factor with a key role in the main feedback loop.

View Article and Find Full Text PDF

The circadian system of plants regulates a wide range of rhythmic physiological and cellular output processes with a period of about 24 h. The rhythms are generated by an oscillator mechanism that, in Arabidopsis, consists of interlocking feedback loops of several components including CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1 (TOC1) and CCA1 HIKING EXPEDITION (CHE). Over recent years, researchers have gained a detailed picture of the clock mechanism at the resolution of the whole plant and several tissue types, but little information is known about the specificities of the clock mechanism at the level of individual cells.

View Article and Find Full Text PDF

Endogenous circadian rhythms are almost ubiquitous among organisms from cyanobacteria to mammals and regulate diverse physiological processes. It has been suggested that having an endogenous circadian system enables an organism to anticipate periodic environmental changes and adapt its physiological and developmental states accordingly, thus conferring a fitness advantage. However, it is hard to measure fitness directly and there is, to date, only limited evidence supporting the assumption that having a circadian system can increase fitness and therefore be adaptive.

View Article and Find Full Text PDF

To ensure that the initiation of flowering occurs at the correct time of year, plants need to integrate a diverse range of external and internal signals. In Arabidopsis, the photoperiodic flowering pathway is controlled by a set of regulators that include CONSTANS (CO). In addition, Arabidopsis plants also have a family of genes with homologies to CO known as CO-LIKE (COL) about which relatively little is known.

View Article and Find Full Text PDF

As an adaptation to life in a world with predictable daily changes, most eukaryotes and some prokaryotes have endogenous circadian (approximately 24 h) clocks. In plants, the circadian clock regulates a diverse range of cellular and physiological events from gene expression and protein phosphorylation to cellular calcium oscillations, hypocotyl growth, leaf movements, and photoperiod-dependent flowering. In Arabidopsis (Arabidopsis thaliana), as in other model organisms, such as Drosophila (Drosophila melanogaster) and mice, circadian rhythms are generated by molecular oscillators that consist of interlocking feedback loops involving a number of elements.

View Article and Find Full Text PDF

The circadian clock is an endogenous mechanism that generates rhythms with an approximately 24-h period and enables plants to predict and adapt to daily and seasonal changes in their environment. These rhythms are generated by molecular oscillators that in Arabidopsis (Arabidopsis thaliana) have been shown to consist of interlocking feedback loops involving a number of elements. An important characteristic of circadian oscillators is that they can be entrained by daily environmental changes in light and temperature.

View Article and Find Full Text PDF

The Arabidopsis circadian system regulates the expression of up to 36% of the nuclear genome, including many genes that encode photosynthetic proteins. The expression of nuclear-encoded photosynthesis genes is also regulated by signals from the chloroplasts, a process known as retrograde signaling. We have identified CHLOROPLAST RNA BINDING (CRB), a putative RNA-binding protein, and have shown that it is important for the proper functioning of the chloroplast.

View Article and Find Full Text PDF

Plants, like many other organisms, have endogenous biological clocks that enable them to organize their physiological, metabolic and developmental processes so that they occur at optimal times. The best studied of these biological clocks are the circadian systems that regulate daily (approximately 24 h) rhythms. At the core of the circadian system in every organism are oscillators responsible for generating circadian rhythms.

View Article and Find Full Text PDF