Biologic factors that predict risk for and mediate the development of common outcomes of trauma exposure such as chronic posttraumatic pain (CPTP) are poorly understood. In the current study, we examined whether peritraumatic circulating 17β-estradiol (E2) levels influence CPTP trajectories. 17β-estradiol levels were measured in plasma samples (n = 254) collected in the immediate aftermath of trauma exposure from 3 multiethnic longitudinal cohorts of men and women trauma survivors.
View Article and Find Full Text PDFSynaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such "early activation" genes silent have been a mystery.
View Article and Find Full Text PDFAdvances in stem cell science allow the production of different cell types either through the recapitulation of developmental processes, often termed 'directed differentiation', or the forced expression of lineage-specific transcription factors. Although cells produced by both approaches are increasingly used in translational applications, their quantitative similarity to their primary counterparts remains largely unresolved. To investigate the similarity between -derived and primary cell types, we harvested and purified mouse spinal motor neurons and compared them with motor neurons produced by transcription factor-mediated lineage conversion of fibroblasts or directed differentiation of pluripotent stem cells.
View Article and Find Full Text PDFAn intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism of this repeat remains unclear. Using human induced motor neurons (iMNs), we found that repeat-expanded C9ORF72 was haploinsufficient in ALS. We found that C9ORF72 interacted with endosomes and was required for normal vesicle trafficking and lysosomal biogenesis in motor neurons.
View Article and Find Full Text PDFAm J Med Genet C Semin Med Genet
September 2014
The BAF (mammalian SWI/SNF) complexes are a family of multi-subunit ATP-dependent chromatin remodelers that use ATP hydrolysis to alter chromatin structure. Distinct BAF complex compositions are possible through combinatorial assembly of homologous subunit families and can serve non-redundant functions. In mammalian neural development, developmental stage-specific BAF assemblies are found in embryonic stem cells, neural progenitors and postmitotic neurons.
View Article and Find Full Text PDFThe mammalian nervous system comprises many distinct neuronal subtypes, each with its own phenotype and differential sensitivity to degenerative disease. Although specific neuronal types can be isolated from rodent embryos or engineered from stem cells for translational studies, transcription factor-mediated reprogramming might provide a more direct route to their generation. Here we report that the forced expression of select transcription factors is sufficient to convert mouse and human fibroblasts into induced motor neurons (iMNs).
View Article and Find Full Text PDFThe combined activity of three transcription factors can reprogram adult cells into induced pluripotent stem cells (iPSCs). However, the transgenic methods used for delivering reprogramming factors have raised concerns regarding the future utility of the resulting stem cells. These uncertainties could be overcome if each transgenic factor were replaced with a small molecule that either directly activated its expression from the somatic genome or in some way compensated for its activity.
View Article and Find Full Text PDF