We hypothesised that normal skeletal muscle stimulated intensely either in vitro or in situ would exhibit reactive oxygen species (ROS)-mediated contractile apparatus changes common to many pathophysiological conditions. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of the rat were bubbled with 95% O(2) and stimulated in vitro at 31°C to give isometric tetani (50 Hz for 0.5 s every 2 s) until maximum force declined to ≤30%.
View Article and Find Full Text PDFIn skeletal muscle fibers, the coupling between excitation of the surface membrane and the release of Ca(2+) from the sarcoplasmic reticulum is irreversibly disrupted if cytoplasmic Ca(2+) concentration ([Ca(2+)]) is raised to micromolar levels for a prolonged period. This excitation-contraction (EC) uncoupling may contribute to muscle weakness after some types of exercise and in certain muscle diseases and has been linked to structural alteration of the triad junctions, but its molecular basis is unclear. Both mu-calpain, a ubiquitous Ca(2+)-activated protease, and muscle-specific calpain-3 become autolytically activated at micromolar Ca(2+) and have been suggested to be responsible for the uncoupling.
View Article and Find Full Text PDFSkeletal muscle fibres contain ubiquitous and muscle-specific calcium-dependent proteases known as calpains. During normal activity, intracellular [Ca(2+)] in muscle fibres increases to high levels ( approximately 2-20 microm), and it is not apparent how this can be reconciled with the activation properties of the calpains. Calpains evidently do not cause widespread proteolytic damage within muscle fibres under normal circumstances, but do have a role in necrosis in dystrophic muscle fibres.
View Article and Find Full Text PDFThe repeated elevation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) above resting levels during contractile activity has been associated with long-lasting muscle fatigue. The mechanism underlying this fatigue appears to involve elevated [Ca(2+)](i) levels that induce disruption of the excitation-contraction (E-C) coupling process at the triad junction. Unclear, however, are which aspects of the activity-related [Ca(2+)](i) changes are responsible for the deleterious effects, in particular whether they depend primarily on the peak [Ca(2+)](i) reached locally at particular sites or on the temporal summation of the increased [Ca(2+)] in the cytoplasm as a whole.
View Article and Find Full Text PDFThis study investigated the effects of elevated, physiological levels of intracellular free [Ca(2+)] on depolarization-induced force responses, and on passive and active force production by the contractile apparatus in mechanically skinned fibres of toad iliofibularis muscle. Excitation-contraction (EC) coupling was retained after skinning and force responses could be elicited by depolarization of the transverse-tubular (T-) system. Raising the cytoplasmic [Ca(2+)] to approximately 1 microm or above for 3 min caused an irreversible reduction in the depolarization-induced force response by interrupting the coupling between the voltage sensors in the T-system and the Ca(2+) release channels in the sarcoplasmic reticulum.
View Article and Find Full Text PDFWe hypothesized that in congestive heart failure (CHF) slow-twitch but not fast-twitch muscles exhibit decreased fatigue resistance in the sense of accelerated reduction of muscle force during activity. Experiments were carried out on anaesthetized rats 6 weeks after induction of myocardial infarction or a sham operation (Sham). Animals with left ventricular end-diastolic pressure (LVEDP) > 15 mmHg under anaesthesia were selected for the CHF group.
View Article and Find Full Text PDF