Comput Methods Programs Biomed
October 2024
Background And Objective: The BOne Strength (BOS) score is a CT-based tool to assess fracture risk for patients with femoral bone metastases using finite element (FE) models. Until now, the knee joint center (KJC) and centers of the condyles (CoCs) were needed to create the FE model, hence BOS scores of incompletely scanned femurs could not be calculated. In this study, a statistical shape model (SSM) was used to align FE models of femurs with a removed knee anatomy.
View Article and Find Full Text PDFBone ranks as the third most frequent tissue affected by cancer metastases, following the lung and liver. Bone metastases are often painful and may result in pathological fracture, which is a major cause of morbidity and mortality in cancer patients. To quantify fracture risk, finite element (FE) analysis has shown to be a promising tool, but metastatic lesions are typically not specifically segmented and therefore their mechanical properties may not be represented adequately.
View Article and Find Full Text PDFBackground: Medial patellofemoral ligament (MPFL) reconstruction is associated with high complication rates because of graft overloading from incorrect graft positioning. To improve clinical outcomes, it is crucial to gain a better understanding of MPFL elongation patterns.
Purpose: To assess MPFL length changes in healthy knees from 0° to 90° of dynamic flexion and their relationship with anatomic parameters of the patellofemoral joint.
Objectives: To develop a reliable instrument to objectively assess feedback quality, to use it for assessment of the quality of students' narrative feedback and to be used as a self-assessment instrument for students in their learning process.
Methods: In a retrospective cohort study, 635 feedback narratives, provided by small groups of Medicine and Biomedical Sciences undergraduate students, have been extracted from available quarterly curriculum evaluation surveys. A rubric was developed based on literature and contents of our feedback education.
For biomechanical simulations of orthopaedic interventions, it is imperative to implement a material model that can realistically reproduce the nonlinear behavior of the bone structure. However, a proper material model that adequately combines the trabecular and cortical bone response is not yet widely identified. The current paper aims to investigate the possibility of using an isotropic crushable foam (ICF) model dependent on local bone mineral density (BMD) for simulating the femoral fracture risk.
View Article and Find Full Text PDFPatients with femoral metastases are at risk of fracturing bones. It is important to prevent fractures in order to maintain mobility and quality of life. The BOne Strength (BOS) score is based on a computed tomography (CT)-based patient-specific finite element (FE) computer model that objectively calculates bone strength.
View Article and Find Full Text PDFThe goal of this study was twofold. First, we aimed to evaluate the accuracy of a finite element (FE) model to predict bone fracture in cancer patients with proximal femoral bone metastases. Second, we evaluated whether femoroplasty could effectively reduce fracture risk.
View Article and Find Full Text PDFRecently, it was shown that fracture risk assessment in patients with femoral bone metastases using Finite Element (FE) modeling can be performed using a calibration phantom or air-fat-muscle calibration and that non-patient-specific calibration was less favorable. The purpose of this study was to investigate if phantomless calibration can be used instead of phantom calibration when different CT protocols are used. Differences in effect of CT protocols on Hounsfield units (HU), calculated bone mineral density (BMD) and FE failure loads between phantom and two methods of phantomless calibrations were studied.
View Article and Find Full Text PDFBackground: Although students are increasingly involved in curriculum design, empirical research on practices of actual student participation is sparse. The purpose of this study is to explore the experiences of students who collaborated in the organizing committee of a large-scale educational event, the Radboud Student Conference (RSC), for fellow students.
Methods: We conducted three focus group interviews, in which 17 (bio) medical students of three different organizing teams shared their experiences regarding the organization of the large-scale teaching event.
Int J Comput Assist Radiol Surg
October 2021
Purpose: Accurate identification of metastatic lesions is important for improvement in biomechanical models that calculate the fracture risk of metastatic bones. The aim of this study was therefore to assess the inter- and intra-operator reliability of manual segmentation of femoral metastatic lesions.
Methods: CT scans of 54 metastatic femurs (19 osteolytic, 17 osteoblastic, and 18 mixed) were segmented two times by two operators.
Patients with bone metastases have an increased risk to sustain a pathological fracture as lytic metastatic lesions damage and weaken the bone. In order to prevent fractures, prophylactic treatment is advised for patients with a high fracture risk. Mechanical stabilization of the femur can be provided through femoroplasty, a minimally invasive procedure where bone cement is injected into the lesion, or through internal fixation with intra- or extramedullary implants.
View Article and Find Full Text PDFNonlinear finite element (FE) models can accurately quantify bone strength in healthy and metastatic femurs. However, their use in clinical practice is limited since state-of-the-art implementations using tetrahedral meshes involve a lot of manual work for which specific modelling software and engineering knowledge are required. Voxel-based meshes could enable the transition since they are robust and can be highly automated.
View Article and Find Full Text PDFPurpose: To determine whether patient-specific finite element (FE) computer models are better at assessing fracture risk for femoral bone metastases compared to clinical assessments based on axial cortical involvement on conventional radiographs, as described in current clinical guidelines.
Methods: Forty-five patients with 50 femoral bone metastases, who were treated with palliative radiotherapy for pain, were included (64% single fraction (8Gy), 36% multiple fractions (5 or 6x4Gy)) and were followed for six months to determine whether they developed a pathological femoral fracture. All plain radiographs available within a two month period prior to radiotherapy were obtained.
The objective of this study was to develop a new calibration method that enables calibration of Hounsfield units (HU) to bone mineral densities (BMD) without the use of a calibration phantom for fracture risk prediction of femurs with metastases using CT-based finite element (FE) models. Fifty-seven advanced cancer patients (67 femurs with bone metastases) were CT scanned atop a separate calibration phantom using a standardized protocol. Non-linear isotropic FE models were constructed based on the phantom calibration and on two phantomless calibration methods: the "air-fat-muscle" and "non-patient-specific" calibration.
View Article and Find Full Text PDFCurrent finite element (FE) models predicting failure behavior comprise single vertebrae, thereby neglecting the role of the posterior elements and intervertebral discs. Therefore, this study aimed to develop a more clinically relevant, case-specific non-linear FE model of two functional spinal units able to predict failure behavior in terms of (i) the vertebra predicted to fail; (ii) deformation of the specimens; (iii) stiffness; and (iv) load to failure. For this purpose, we also studied the effect of different bone density-mechanical properties relationships (material models) on the prediction of failure behavior.
View Article and Find Full Text PDFIn a multi-center patient study, using different CT scanners, CT-based finite element (FE) models are utilized to calculate failure loads of femora with metastases. Previous studies showed that using different CT scanners can result in different outcomes. This study aims to quantify the effects of (i) different CT scanners; (ii) different CT protocols with variations in slice thickness, field of view (FOV), and reconstruction kernel; and (iii) air between calibration phantom and patient, on Hounsfield Units (HU), bone mineral density (BMD), and FE failure load.
View Article and Find Full Text PDFWe propose an experimental setup and protocol able to induce targeted failure of the middle vertebra in 3-segment spinal units and to capture the specimens' deformation in their post-failure state. Sixteen 3-segment spinal units with and without artificial metastases were destructively tested in axial compression using one of two failure criteria; either: (A) A clear drop in force (>10-15% of peak force) (n = 4); or (B) A minimum displacement of 5 mm (n = 12). Subsequently, the specimens were fully fixated in polymethylmethacrylate (PMMA), thereby preserving their post-failure state.
View Article and Find Full Text PDFPurpose: The aim of this study was to determine the effect of single fraction (SF) and multiple fraction (MF) radiation therapy (RT) on bone mineral density (BMD) in patients with cancer and bone metastases in the proximal femur. We studied this effect in the radiation field and within metastatic lesions, and differentiated between lytic, blastic, and mixed lesions.
Methods And Materials: This prospective cohort study comprised 42 patients with painful bone metastases, including 47 irradiated femora with 52 metastatic lesions in the proximal femur.
Purpose: The role of radiotherapy in stabilizing metastatic bones is unclear. This systematic review assessed the effects of (1) radiotherapy, (2) radiotherapy combined with bisphosphonates, and (3) radiotherapy combined with RANK ligand (RANKL) inhibitors on bone quality and bone strength in bone metastases originating from solid tumors.
Methods: Pubmed, EMBASE and the Cochrane Library were searched.
Background: Exams in anatomy courses are traditionally summative. Formative testing induces retrieval practice, provides feedback and enhances learning results. We investigated the optimal frequency for retrieval practice during an anatomy course.
View Article and Find Full Text PDFCurrent clinical practice lacks an accurate predictor for the pathological fracture risk in metastatic bone disease, but biomechanical tools are under development to improve these predictions. In this paper we explain the limitations of currently used clinical guidelines and provide an overview of more objective and quantitative approaches that have been proposed for fracture risk assessment in metastatic bone disease. Currently, such mechanical models are as sensitive and specific as clinical guidelines, but there are a number of opportunities to further improve their predictive capacity.
View Article and Find Full Text PDFAdjacent level vertebral fractures are common in patients with osteoporotic wedge fractures, but can theoretically be prevented with prophylactic vertebroplasty. Previous tests on prophylactic vertebroplasties have been performed under axial loading, while in vivo changes in spinal alignment likely cause off-axis loads. In this study we determined whether prophylactic vertebroplasty can also reduce the fracture risk under off-axis loads.
View Article and Find Full Text PDFMany students in Biomedical Sciences have difficulty understanding biomechanics. In a second-year course, biomechanics is taught in the first week and examined at the end of the fourth week. Knowledge is retained longer if the subject material is repeated.
View Article and Find Full Text PDFThere is an urgent need to improve the prediction of fracture risk for cancer patients with bone metastases. Pathological fractures that result from these tumors frequently occur in the femur. It is extremely difficult to determine the fracture risk even for experienced physicians.
View Article and Find Full Text PDFSpine (Phila Pa 1976)
November 2013
Study Design: An in vitro cadaveric study.
Objective: To determine whether percutaneous vertebroplasty (PVP) with a clinically relevant amount of bone cement is capable of causing stress peaks in adjacent-level vertebrae.
Summary Of Background Data: It is often suggested that PVP of a primary spinal fracture causes stress peaks in adjacent vertebrae, thereby leading to additional fractures.