Today, it would be difficult for us to live a full life without polymers, especially in medicine, where its applicability is constantly expanding, giving satisfactory results without any harm effects on health. This study focused on the formation of hexagonal domains doped with AgNPs using a KrF excimer laser (λ=248 nm) on the polyetheretherketone (PEEK) surface that acts as an unfailing source of the antibacterial agent - silver. The hexagonal structure was formed with a grid placed in front of the incident laser beam.
View Article and Find Full Text PDFHere, we present a detailed description of the in situ isothermal crystallization of poly(trimethylene 2,5-furandicarboxylate)(PTF) as revealed by real-time Fourier transform infrared spectroscopy (FTIR) and grazing incidence wide-angle X-ray scattering (GIWAXS). From FTIR experiments, the evolution of hydrogen bonding with crystallization time can be monitored in real time, while from GIWAXS, crystal formation can be followed. Density functional theory (DFT) calculations have been used to simulate FTIR spectra for different theoretical structures, enabling a precise band assignment.
View Article and Find Full Text PDFRecent years have witnessed an increasing interest in the synthesis and study of BODIPY-glycoconjugates. Most of the described synthetic methods toward these derivatives involve postfunctional modifications of the BODIPY core followed by the covalent attachment of the fluorophore and the carbohydrate through a "connector". Conversely, few synthetic approaches to linker-free carbohydrate-BODIPY hybrids have been described.
View Article and Find Full Text PDFThe presence of F or CN substituents at boron in BODIPYs causes a dramatic effect on their reactivity, which allows their chemoselective postfunctionalization. Thus, whereas 1,3,5,7-tetramethyl B(CN)-BODIPYs displayed enhanced reactivity in Knoevenagel condensations with aldehydes, the corresponding BF-BODIPYs can experience selective aromatic electrophilic substitution (SAr) reactions in the presence of the former. These (selective) reactions have been employed in the preparation of BODIPY dimers and tetramers, with balanced fluorescence and singlet oxygen formation, and all-BODIPY trimers and heptamers, with potential application as light-harvesting systems.
View Article and Find Full Text PDFPolymers (Basel)
December 2022
In this work, the formation of laser-induced periodic surface structures (LIPSS) on the surfaces of thin films of poly(ethylene terephthalate) (PET) and PET reinforced with expanded graphite (EG) was studied. Laser irradiation was carried out by ultraviolet (265 nm) and near-infrared (795 nm) femtosecond laser pulses, and LIPSS were formed in both materials. In all cases, LIPSS had a period close to the irradiation wavelength and were formed parallel to the polarization of the laser beam, although, in the case of UV irradiation, differences in the formation range were observed due to the different thermal properties of the neat polymer in comparison to the composite.
View Article and Find Full Text PDFWe envisioned a new approach for achieving triplet-triplet annihilation-assisted photon upconversion based on the rational design of a heavy-atom-free, all-organic and photoactivatable triplet-triplet synergistic multichromophoric molecular assembly. This single molecular architecture is easily built by covalently anchoring triplet-annihilator units (pyrenes) to a triplet-photosensitizer moiety (BODIPY), to improve the effectiveness and probability of the required triplet-triplet energy transfer and the ulterior triplet-triplet annihilation. This unprecedented design takes advantage of the high synthetic accessibility and chemical versatility of the -BODIPY scaffold.
View Article and Find Full Text PDFWe performed a time-gated laser-spectroscopy study in a set of heavy-atom free single BODIPY fluorophores, supported by accurate, excited-state computational simulations of the key low-lying excited states in these chromophores. Despite the strong fluorescence of these emitters, we observed a significant fraction of time-delayed (microseconds scale) emission associated with processes that involved passage through the triplet manifold. The accuracy of the predictions of the energy arrangement and electronic nature of the low-lying singlet and triplet excited states meant that an unambiguous assignment of the main deactivation pathways, including thermally activated delayed fluorescence and/or room temperature phosphorescence, was possible.
View Article and Find Full Text PDFWe have established an easy synthetic protocol for selectively developing all-orthogonal BODIPY trimers with unprecedented geometries on the basis of selecting methyl oxidation versus electrophilic formylation of key dimeric precursors. Photophysical characterization together with biological assays unraveled the most suitable BODIPY-BODIPY geometrical arrangements within the trimer, forcing them to serve as molecular platforms for the development of new, advanced heavy-atom-free photosensitizers for photodynamic therapy and phototheragnosis.
View Article and Find Full Text PDFBINOL moieties of different electronic demand are useful blocks for enabling the photo-production and modulation of triplet excited states in readily-accesible BINOL-based -BODIPY dyes from standard -BODIPY precursors. The rapid and rational development of smarter triplet-enabling BODIPY dyes on the basis of this strategy (, TADF biomarker 4a or room temperature phosphor 4g) paves the way for advancing photonic applications based on organic triplet photosensitizers.
View Article and Find Full Text PDFGeneration of triplet states in assemblies of organic chromophores is extremely appealing for their potential use in optoelectronic applications. In this work, we investigate the intricacies of triplet state generation in an orthogonal BODIPY dimer by combining delayed photoemission techniques with electronic structure calculations. Our analysis provides a deep understanding of the electronic states involved, and describes different competing deactivation channels beyond prompt radiative decay.
View Article and Find Full Text PDFLaser-based methods have demonstrated to be effective in the fabrication of surface micro- and nanostructures, which have a wide range of applications, such as cell culture, sensors or controlled wettability. One laser-based technique used for micro- and nanostructuring of surfaces is the formation of laser-induced periodic surface structures (LIPSS). LIPSS are formed upon repetitive irradiation at fluences well below the ablation threshold and in particular, linear structures are formed in the case of irradiation with linearly polarized laser beams.
View Article and Find Full Text PDFNanostructured thin films of Co-doped zinc sulfide were synthesized through femtosecond pulsed laser deposition. The scheme involved ablation of physically mixed Co and ZnS with pairs of ultrashort pulses separated in time in the 0-300 ps range. In situ monitorization of the deposition process was carried out through a simultaneous reflectivity measurement.
View Article and Find Full Text PDFThe search for long-lived red and NIR fluorescent dyes is challenging and hitherto scarcely reported. Herein, the viability of aza-BODIPY skeleton as a promising system for achieving thermal activated delayed fluorescent (TADF) probes emitting in this target region is demonstrated for the first time. The synthetic versatility of this scaffold allows the design of energy and charge transfer cassettes modulating the stereoelectronic properties of the energy donors, the spacer moieties and the linkage positions.
View Article and Find Full Text PDFWe report the study of the formation of Laser Induced Periodic Surface Structures (LIPSS), with UV femtosecond laser pulses (λ = 265 nm), in free-standing films of both Poly(trimethylene terephthalate) (PTT) and the composite PTT/tungsten disulfide inorganic nanotubes (PTT-WS). We characterized the range of fluences and number of pulses necessary to induce LIPSS formation and measured the topography of the samples by Atomic Force Microscopy, the change in surface energy and contact angle using the sessile drop technique, and the modification in both Young's modulus and adhesion force values with Peak Force-Quantitative Nanomechanical Mapping. LIPSS appeared parallel to the laser polarization with a period close to its wavelength in a narrow fluence and number of pulses regime, with PTT-WS needing slightly larger fluence than raw PTT due to its higher crystallinity and heat diffusion.
View Article and Find Full Text PDFThe evolution of the magnetic anisotropy directions has been studied in a magnetite (FeO) thin film grown by infrared pulsed-laser deposition on SrTiO(100):Nb substrate. The magnetic easy axes at room temperature are found along the in-plane 〈100〉 film directions, which means a rotation of the easy axis by 45° with respect to the directions typically reported for bulk magnetite and films grown on single-crystal substrates. Moreover, when undergoing the Verwey transition temperature, T, the easy axis orientation evolves to the 〈110〉 film directions.
View Article and Find Full Text PDFWe report the measurement of form and magnetic birefringence in Permalloy (Ni80Fe20) films grown on rippled Poly(Ethylene Terephthalate), PET, substrates. Prior to Permalloy deposition, Laser Induced Periodic Surface Structures (LIPSS) were generated on the polymeric substrate by a nanosecond laser beam, developing an ordered rippled nanostructure. Due to their high transparency factor, we could investigate the behavior of linear polarized light transmitting at normal incidence on Permalloy/PET sample.
View Article and Find Full Text PDFOrdered and homogeneous laser-induced periodic surface structures (LIPSS) could be fabricated in poly(3-hexyl thiophene):[6,6]-phenyl C71-butyric acid methyl ester (P3HT:PCBM) blends by using wavelengths in the ultraviolet (UV) range (266 nm). The absorption coefficient of PCBM, which is maximum in its UV⁻Visible absorption spectrum around 266 nm, enhanced the overall absorption of the blend. In addition, PCBM itself was capable of developing homogeneous LIPSS by laser irradiation at λ = 266 nm.
View Article and Find Full Text PDFIn this work we report a broad scenario for the patterning of semiconducting polymers by laser-induced periodic surface structures (LIPSS). Based on the LIPSS formation in the semicrystalline poly(3-hexylthiophene) (P3HT), we have extended the LIPSS fabrication to an essentially amorphous semiconducting polymer like poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT). This polymer shows a good quality and well-ordered nanostructures not only at the 532 nm laser wavelength, as in the case of P3HT, but also at 266 nm providing gratings with smaller pitch.
View Article and Find Full Text PDFNanomechanical properties of alginate/chitosan (Alg/Chi) multilayer films, obtained through spray assisted layer-by-layer assembly, were studied by means of PeakForce quantitative nanomechanical mapping atomic force microscopy (PF-QNM AFM). Prepared at two different alginate concentrations (1.0 and 2.
View Article and Find Full Text PDFWe describe the conditions for optimal formation of laser-induced periodic surface structures (LIPSS) over poly(3-hexylthiophene) (P3HT) spin-coated films. Optimal LIPSS on P3HT are observed within a particular range of thicknesses and laser fluences. These conditions can be translated to the photovoltaic blend formed by the 1:1 mixture of P3HT and [6,6]-phenyl C-butyric acid methyl ester (PCBM) when deposited on an indium tin oxide (ITO) electrode coated with (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS).
View Article and Find Full Text PDFFemtosecond lasers, used as tools to investigate the ablation dynamics of solids, can help to develop strategies to control the deposition of nanomaterials by pulsed laser ablation. In this work, Co/ZnS targets, potential candidates for the synthesis of diluted magnetic semiconductor materials, are irradiated by sequences of two femtosecond laser pulses delayed in the picosecond time scale. The ionic composition of the ablation plasma and the dependence of the ion signals on the interpulse delay and relative fluence are determined by time-of-flight mass spectrometry.
View Article and Find Full Text PDFPolymer ferroelectric laser-induced periodic surface structures (LIPSS) have been prepared on ferroelectric thin films of a poly(vinylidene fluoride-trifluoroethylene) copolymer. Although this copolymer does not absorb light at the laser wavelength, LIPSS on the copolymer can be obtained by forming a bilayer with other light-absorbing polymers. The ferroelectric nature of the structured bilayer was proven by piezoresponse force microscopy measurements.
View Article and Find Full Text PDFThe formation of laser-induced periodic surface structures (LIPSS) on model spin-coated polymer films has been followed in situ by grazing incidence small-angle X-ray scattering (GISAXS) using synchrotron radiation. The samples were irradiated at different repetition rates ranging from 1 up to 10 Hz by using the fourth harmonic of a Nd:YAG laser (266 nm) with pulses of 8 ns. Simultaneously, GISAXS patterns were acquired during laser irradiation.
View Article and Find Full Text PDFIn this work we present an accurate mapping of the structural order of laser-induced periodic surface structures (LIPSS) in spin-coated thin polymer films, via a microfocus beam grazing incidence small-angle X-ray scattering (μGISAXS) scan, GISAXS modeling, and atomic force microscopy imaging all along the scanned area. This combined study has allowed the evaluation of the effects on LIPSS formation due to nonhomogeneous spatial distribution of the laser pulse energy, mapping with micrometric resolution the evolution of the period and degree of structural order of LIPSS across the laser beam diameter in a direction perpendicular to the polarization vector. The experiments presented go one step further toward controlling nanostructure formation in LIPSS through a deep understanding of the parameters that influence this process.
View Article and Find Full Text PDFThis work reports on the formation of different types of structures on the surface of polymer films upon UV laser irradiation. Poly(ethylene terephthalate) was irradiated with nanosecond UV pulses at 193 and 266 nm. The polarization of the laser beam and the irradiation angle of incidence were varied, giving rise to laser induced surface structures with different shapes and periodicities.
View Article and Find Full Text PDF