Hydrogels loaded with magnetic iron oxide nanoparticles that can be patterned and which controllably induce hyperthermic responses on AC-field stimulation are of interest as functional components of next-generation biomaterials. Formation of nanocomposite hydrogels is known to eliminate any Brownian contribution to hyperthermic response (reducing stimulated heating) while the Néel contribution can also be suppressed by inter-particle dipolar interactions arising from aggregation induced before or during gelation. We describe the ability of graphene oxide (GO) flakes to restore the hyperthermic efficiency of soft printable hydrogels formed using Pluronics F127 and PEGylated magnetic nanoflowers.
View Article and Find Full Text PDFDetermining the nature, evolution, and impact of acid-generating sulfur deposits in the Mary Rose wooden hull is crucial for protecting Henry VIII's famous warship for generations to come. Here, a comprehensive X-ray absorption near-edge spectroscopy (XANES) and X-ray fluorescence (XRF) study sheds vital light on the evolution of complex sulfur-based compounds lodged in Mary Rose timbers as a function of drying time. Combining insights from infrared spectroscopy correlates the presence of oxidized sulfur species with increased wood degradation via the loss of major wood components (holocellulose).
View Article and Find Full Text PDFThe titanate and stannate pyrochlore-type oxides have been investigated because of their potential applications in different fields. Pyrochlore-type oxides exhibit a wide variety of properties such as fast ionic conduction, resistance to radiation induced structural damage, and ferro- and antiferro-magnetism. These properties mainly depend on the metal-oxygen bonding interactions and electronic structure of the materials, both of which can change with composition.
View Article and Find Full Text PDF