Publications by authors named "Esther Puyol Anton"

Aims: Artificial intelligence (AI) techniques have been proposed for automating analysis of short-axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-to-end automatic quantification of cardiac function from SAX cine CMR in large clinical databases.

Methods And Results: Our pipeline for processing and analysing CMR databases includes automated steps to identify the correct data, robust image pre-processing, an AI algorithm for biventricular segmentation of SAX CMR and estimation of functional biomarkers, and automated post-analysis quality control to detect and correct errors.

View Article and Find Full Text PDF

Cine cardiac magnetic resonance (CMR) imaging is considered the gold standard for cardiac function evaluation. However, cine CMR acquisition is inherently slow and in recent decades considerable effort has been put into accelerating scan times without compromising image quality or the accuracy of derived results. In this article, we present a fully-automated, quality-controlled integrated framework for reconstruction, segmentation and downstream analysis of undersampled cine CMR data.

View Article and Find Full Text PDF

Background: Increased systemic vascular resistance and, in older people, reduced aortic distensibility, are thought to be the hemodynamic determinants of primary hypertension but cardiac output could also be important. We examined the hemodynamics of elevated blood pressure and hypertension in the middle to older-aged UK population participating in the UK Biobank imaging studies.

Methods: Cardiac output, systemic vascular resistance, and aortic distensibility were measured from cardiac magnetic resonance imaging in 31 112 (distensibility in 21 178) participants (46.

View Article and Find Full Text PDF

Objectives: Two interlinked surveys were organised by the British Heart Foundation Data Science Centre, which aimed to establish national priorities for cardiovascular imaging research.

Methods: First a single time point public survey explored their views of cardiovascular imaging research. Subsequently, a three-phase modified Delphi prioritisation exercise was performed by researchers and healthcare professionals.

View Article and Find Full Text PDF

Quantifying uncertainty of predictions has been identified as one way to develop more trustworthy artificial intelligence (AI) models beyond conventional reporting of performance metrics. When considering their role in a clinical decision support setting, AI classification models should ideally avoid confident wrong predictions and maximise the confidence of correct predictions. Models that do this are said to be well calibrated with regard to confidence.

View Article and Find Full Text PDF

2D cardiac MR cine images provide data with a high signal-to-noise ratio for the segmentation and reconstruction of the heart. These images are frequently used in clinical practice and research. However, the segments have low resolution in the through-plane direction, and standard interpolation methods are unable to improve resolution and precision.

View Article and Find Full Text PDF

Dysfunction of either the right or left ventricle can lead to heart failure (HF) and subsequent morbidity and mortality. We performed a genome-wide association study (GWAS) of 16 cardiac magnetic resonance (CMR) imaging measurements of biventricular function and structure. Mendelian randomization (MR) was used to identify plasma proteins associating with CMR traits as well as with any of the following cardiac outcomes: HF, non-ischemic cardiomyopathy, dilated cardiomyopathy (DCM), atrial fibrillation, or coronary heart disease.

View Article and Find Full Text PDF

In terms of accuracy, deep learning (DL) models have had considerable success in classification problems for medical imaging applications. However, it is well-known that the outputs of such models, which typically utilise the SoftMax function in the final classification layer can be over-confident, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiac shape modeling helps diagnose heart diseases but traditionally requires a lot of manual work and time, limiting its use in clinical settings.
  • A new automated pipeline using deep learning has been developed to streamline the process, including tasks like view classification and image segmentation, aiming to make cardiac models quicker and easier to produce.
  • Testing showed that the accuracy of the automated models is comparable to manual models, indicating this technology could significantly enhance clinical workflows for assessing heart conditions.
View Article and Find Full Text PDF

Background: drug development and disease prevention of heart failure (HF) and atrial fibrillation (AF) are impeded by a lack of robust early-stage surrogates. We determined to what extent cardiac magnetic resonance (CMR) measurements act as surrogates for the development of HF or AF in healthy individuals.

Methods: Genetic data was sourced on the association with 22 atrial and ventricular CMR measurements.

View Article and Find Full Text PDF

Background Automated analysis of cardiovascular magnetic resonance images provides the potential to assess aortic distensibility in large populations. The aim of this study was to compare the prediction of cardiovascular events by automated cardiovascular magnetic resonance with those of other simple measures of aortic stiffness suitable for population screening. Methods and Results Aortic distensibility was measured from automated segmentation of aortic cine cardiovascular magnetic resonance using artificial intelligence in 8435 participants.

View Article and Find Full Text PDF

Aims: Existing strategies that identify post-infarct ventricular tachycardia (VT) ablation target either employ invasive electrophysiological (EP) mapping or non-invasive modalities utilizing the electrocardiogram (ECG). Their success relies on localizing sites critical to the maintenance of the clinical arrhythmia, not always recorded on the 12-lead ECG. Targeting the clinical VT by utilizing electrograms (EGM) recordings stored in implanted devices may aid ablation planning, enhancing safety and speed and potentially reducing the need of VT induction.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the prevalence and effects of pathogenic variants linked to arrhythmogenic right ventricular cardiomyopathy (ARVC), dilated cardiomyopathy (DCM), and hypertrophic cardiomyopathy (HCM) in a sample of over 200,000 individuals from the UK Biobank.
  • Findings indicate that the prevalence of these variants varies, with DCM variants showing higher cardiovascular mortality and increased diagnosis of cardiomyopathy compared to controls.
  • Despite these findings, disease penetrance among variant carriers remains low, with only 1.2-3.1% of carriers displaying significant disease expression, highlighting the need for careful management of incidental findings in genomic studies.
View Article and Find Full Text PDF

Simpson's biplane rule (SBR) is considered the gold standard method for left ventricle (LV) volume quantification from echocardiography but relies on a summation-of-disks approach that makes assumptions about LV orientation and cross-sectional shape. We aim to identify key limiting factors in SBR and to develop a new robust standard for volume quantification. Three methods for computing LV volume were studied: (i) SBR, (ii) addition of a truncated basal cone (TBC) to SBR and (iii) a novel method of basal-oriented disks (BODs).

View Article and Find Full Text PDF

We present a novel multimodal deep learning framework for cardiac resynchronisation therapy (CRT) response prediction from 2D echocardiography and cardiac magnetic resonance (CMR) data. The proposed method first uses the 'nnU-Net' segmentation model to extract segmentations of the heart over the full cardiac cycle from the two modalities. Next, a multimodal deep learning classifier is used for CRT response prediction, which combines the latent spaces of the segmentation models of the two modalities.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) techniques have been proposed for automation of cine CMR segmentation for functional quantification. However, in other applications AI models have been shown to have potential for sex and/or racial bias. The objective of this paper is to perform the first analysis of sex/racial bias in AI-based cine CMR segmentation using a large-scale database.

View Article and Find Full Text PDF

Artificial intelligence (AI) refers to the area of knowledge that develops computerised models to perform tasks that typically require human intelligence. These algorithms are programmed to learn and identify patterns from "training data," that can be subsequently applied to new datasets, without being explicitly programmed to do so. AI is revolutionising the field of medical imaging and in particular of Cardiovascular Magnetic Resonance (CMR) by providing deep learning solutions for image acquisition, reconstruction and analysis, ultimately supporting the clinical decision making.

View Article and Find Full Text PDF

Dilated Cardiomyopathy is conventionally defined by left ventricular dilatation and dysfunction in the absence of coronary disease. Emerging evidence suggests many patients remain vulnerable to major adverse outcomes despite clear therapeutic success of modern evidence-based heart failure therapy. In this era of personalized medical care, the conventional assessment of left ventricular ejection fraction falls short in fully predicting evolution and risk of outcomes in this heterogenous group of heart muscle disease, as such, a more refined means of phenotyping this disease appears essential.

View Article and Find Full Text PDF

Deep learning demonstrates great promise for automated analysis of CMR. However, existing limitations, such as insufficient quality control and selection of target acquisitions from the full CMR exam, are holding back the introduction of deep learning tools in the clinical environment. This study aimed to develop a framework for automated detection and quality-controlled selection of standard cine sequences images from clinical CMR exams, prior to analysis of cardiac function.

View Article and Find Full Text PDF

Focal ventricular tachycardia (VT) is a life-threating arrhythmia, responsible for high morbidity rates and sudden cardiac death (SCD). Radiofrequency ablation is the only curative therapy against incessant VT; however, its success is dependent on accurate localization of its source, which is highly invasive and time-consuming. The goal of our study is, as a proof of concept, to demonstrate the possibility of utilizing electrogram (EGM) recordings from cardiac implantable electronic devices (CIEDs).

View Article and Find Full Text PDF

Background: Tissue characterisation with cardiovascular magnetic resonance (CMR) parametric mapping has the potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by late gadolinium enhancement. Native T mapping in particular has shown promise as a useful biomarker to support diagnostic, therapeutic and prognostic decision-making in ischaemic and non-ischaemic cardiomyopathies.

Methods: Convolutional neural networks (CNNs) with Bayesian inference are a category of artificial neural networks which model the uncertainty of the network output.

View Article and Find Full Text PDF

Segmenting anatomical structures in medical images has been successfully addressed with deep learning methods for a range of applications. However, this success is heavily dependent on the quality of the image that is being segmented. A commonly neglected point in the medical image analysis community is the vast amount of clinical images that have severe image artefacts due to organ motion, movement of the patient and/or image acquisition related issues.

View Article and Find Full Text PDF

One of the challenges in developing deep learning algorithms for medical image segmentation is the scarcity of annotated training data. To overcome this limitation, data augmentation and semi-supervised learning (SSL) methods have been developed. However, these methods have limited effectiveness as they either exploit the existing data set only (data augmentation) or risk negative impact by adding poor training examples (SSL).

View Article and Find Full Text PDF

Advances in deep learning (DL) have resulted in impressive accuracy in some medical image classification tasks, but often deep models lack interpretability. The ability of these models to explain their decisions is important for fostering clinical trust and facilitating clinical translation. Furthermore, for many problems in medicine there is a wealth of existing clinical knowledge to draw upon, which may be useful in generating explanations, but it is not obvious how this knowledge can be encoded into DL models - most models are learnt either from scratch or using transfer learning from a different domain.

View Article and Find Full Text PDF