Background: Pyroptosis executor GsdmD (gasdermin D) promotes atherosclerosis in mice and humans. Disulfiram was recently shown to potently inhibit GsdmD, but the in vivo efficacy and mechanism of disulfiram's antiatherosclerotic activity is yet to be explored.
Methods And Results: We used human/mouse macrophages, endothelial cells, and smooth muscle cells and a hyperlipidemic mouse model of atherosclerosis to determine disulfiram antiatherosclerotic efficacy and mechanism.
Pyroptosis executor Gasdermin (GsdmD) promotes atherosclerosis in mice and humans. Disulfiram (DSF) was recently shown to potently inhibit GsdmD, but the in-vivo efficacy and mechanism of DSF's anti-atherosclerotic activity is yet to be explored. We used human/mouse macrophages and a hyperlipidemic mouse model of atherosclerosis to determine DSF anti-atherosclerotic efficacy and mechanism.
View Article and Find Full Text PDF