Publications by authors named "Esther N Pesciotta"

Diamond Blackfan Anemia (DBA) is a rare, congenital erythrocyte aplasia that is usually caused by haploinsufficiency of ribosomal proteins due to diverse mutations in one of several ribosomal genes. A striking feature of this disease is that a range of different mutations in ribosomal proteins results in similar disease phenotypes primarily characterized by erythrocyte abnormalities and macrocytic anemia, while most other cell types in the body are minimally affected. Previously, we analyzed the erythrocyte membrane proteomes of several DBA patients and identified several proteins that are not typically associated with this cell type and that suggested inflammatory mechanisms contribute to the pathogenesis of DBA.

View Article and Find Full Text PDF

Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex.

View Article and Find Full Text PDF
Article Synopsis
  • Diamond Blackfan Anemia (DBA) is a type of congenital anemia linked to mutations in ribosomal proteins, but the causes of its associated macrocytic anemia are not fully understood.
  • Researchers analyzed the red blood cell membranes from DBA patients to see if there were protein translation issues or problems in the formation of red blood cells.
  • The study found notable differences in the protein compositions of DBA patients' red cell membranes compared to healthy individuals, including elevated levels of fetal hemoglobin and the presence of dysferlin, highlighting a unique protein signature for DBA patients.
View Article and Find Full Text PDF

Red blood cells have been extensively studied but many questions regarding membrane properties and pathophysiology remain unanswered. Proteome analysis of red cell membranes is complicated by a very wide dynamic range of protein concentrations as well as the presence of proteins that are very large, very hydrophobic, or heterogeneously glycosylated. This study investigated the removal of other blood cell types, red cell membrane extraction, differing degrees of fractionation using 1-D SDS gels, and label-free quantitative methods to determine optimized conditions for proteomic comparisons of clinical blood samples.

View Article and Find Full Text PDF

Intermolecular interactions involving hydrogen bonds are responsible for catalysis and recognition. Traditional methods used to study hydrogen-bonding interactions are generally limited to relatively large volumes and high substrate concentrations. Backscattering Interferometry (BSI) provides a microfluidic platform to study these interactions in nonaqueous media at micromolar to nanomolar concentrations in picoliter volumes by monitoring changes in the refractive index.

View Article and Find Full Text PDF