Publications by authors named "Esther Molina-Menor"

Solid State Fermentation (SSF) processes have been explored for yeast growth and protein and metabolites production. However, most of these processes lack standardization. In this work, we present a polylactic acid (PLA) 3D printed matrix that dramatically enhances yeast growth when embedded in liquid media compared to equivalent static cultures, and changes yeast expression patterns at the proteome level (data are available via ProteomeXchange with identifier PXD043759).

View Article and Find Full Text PDF

Microorganisms colonize all possible ecological habitats, including those subjected to harsh stressors such as UV radiation. Hospitals, in particular the UV cabins used in phototherapy units, constitute an environment in which microbes are intermittently subjected to UV irradiation. This selective pressure, in addition to the frequent use of antibiotics by patients, may represent a threat in the context of the increasing problem of antimicrobial resistance.

View Article and Find Full Text PDF

A novel Gram-reaction-negative, facultatively anaerobic, rod-shaped, non-motile, non-spore forming, orange-pigmented bacterium identified as M10.2A, was isolated from marine residues submerged on the Malva-rosa beach (València, Spain), on the western coast of the Mediterranean Sea. This strain was catalase-positive and oxidase-negative and grew under mesophilic, neutrophilic and halophilic conditions.

View Article and Find Full Text PDF

A novel Gram-reaction-negative, aerobic, motile, rod-shaped, grey bacterium, strain P4.10X, was isolated from plastic debris sampled from shallow waters in the Mediterranean Sea (Valencia, Spain). P4.

View Article and Find Full Text PDF

A novel Gram-stain-negative, non-motile, halophilic bacterium designated strain M10.9X was isolated from the inner sediment of an aluminium can collected from the Mediterranean Sea (València, Spain). Cells of strain M10.

View Article and Find Full Text PDF

Ocean pollution is a worldwide environmental challenge that could be partially tackled through microbial applications. To shed light on the diversity and applications of the bacterial communities that inhabit the sediments trapped in artificial containers, we analyzed residues (polyethylene terephthalate [PET] bottles and aluminum cans) collected from the Mediterranean Sea by scanning electron microscopy and next generation sequencing. Moreover, we set a collection of culturable bacteria from the plastisphere that were screened for their ability to use PET as a carbon source.

View Article and Find Full Text PDF

Two novel Gram-staining-negative, aerobic, cocci-shaped, non-motile, non-spore forming, pink-pigmented bacteria designated strains T6 and T18, were isolated from a biocrust (biological soil crust) sample from the vicinity of the Tabernas Desert (Spain). Both strains were catalase-positive and oxidase-negative, and grew under mesophilic, neutrophilic and non-halophilic conditions. According to the 16S rRNA gene sequences, strains T6 and T18 showed similarities with CGMCC 1.

View Article and Find Full Text PDF

One of the most diverse ecological niches for microbial bioprospecting is soil, including that of drylands. Drylands are one of the most abundant biomes on Earth, but extreme cases, such as deserts, are considered very rare in Europe. The so-called Tabernas Desert is one of the few examples of a desert area in continental Europe, and although some microbial studies have been performed on this region, a comprehensive strategy to maximize the isolation of environmental bacteria has not been conducted to date.

View Article and Find Full Text PDF

Three novel Gram-positive, aerobic, chemoheterotrophic, motile, non-endospore-forming, orange-pigmented bacteria designated strains T13, T90 and R8 were isolated from the Tabernas Desert biocrust (Almería, Spain). Cells of the three strains were coccus-shaped and occurred singly, in pairs or clusters. The three strains were oxidase-negative and catalase-positive, and showed a mesophilic, neutrophilic and non-halophilic metabolism.

View Article and Find Full Text PDF

Solar panel surfaces can be colonized by microorganisms adapted to desiccation, temperature fluctuations and solar radiation. Although the taxonomic and functional composition of these communities has been studied, the microbial colonization process remains unclear. In the present work, we have monitored this microbial colonization process during 24 months by performing weekly measurements of the photovoltaic efficiency, carrying out 16S rRNA gene high-throughput sequencing, and studying the effect of antimicrobial compounds on the composition of the microbial biocenosis.

View Article and Find Full Text PDF

Microbial communities from harsh environments hold great promise as sources of biotechnologically relevant strains and compounds. In the present work, we have characterized the microorganisms from the supralittoral and splash zone in three different rocky locations of the Western Mediterranean coast, a tough environment characterized by high levels of irradiation and large temperature and salinity fluctuations. We have retrieved a complete view of the ecology and functional aspects of these communities and assessed the biotechnological potential of the cultivable microorganisms.

View Article and Find Full Text PDF

A large survey of visitors at a science museum about the perception of biotechnology shows that names matter and that gender has an influence on people's attitude towards new technologies.

View Article and Find Full Text PDF

Solar panels located on high (Arctic and Antarctic) latitudes combine the harshness of the climate with that of the solar exposure. We report here that these polar solar panels are inhabited by similar microbial communities in taxonomic terms, dominated by Hymenobacter spp., Sphingomonas spp.

View Article and Find Full Text PDF