The current climate change scenario is accelerating degradation, desertification, and salinisation: all destructive processes that are negatively impacting arable lands and food production [...
View Article and Find Full Text PDFDrought is an environmental stressor that affects crop yield worldwide. Understanding plant physiological responses to stress conditions is needed to secure food in future climate conditions. In this study, we applied a combination of plant physiology and metabolomic techniques to understand plant responses to progressive water deficit focusing on the root system.
View Article and Find Full Text PDFWater-deficit stresses such as drought and salinity are the most important factors limiting crop productivity. Hence, understanding the plant responses to these stresses is key for the improvement of their tolerance and yield. In this study plants were subjected to 250 mM NaCl as well as reduced irrigation (No-W) and 250 g/L polyethylene glycol (PEG)-6000 to induce salinity and drought stress, respectively, provoking a drop to -1.
View Article and Find Full Text PDFDuring moderate drought stress, plants can adjust by changes in the protein profiles of the different organs. Plants transport and modulate extracellular stimuli local and systemically through commonly induced inter- and intracellular reactions. However, most proteins are frequently considered, cell and organelle specific.
View Article and Find Full Text PDFZr-panitumumab is a novel immuno-PET radiotracer. A fully humanized IgG2 antibody, panitumumab binds with high affinity to the extracellular ligand binding domain of EGFR. Immuno-PET with radiolabeled panitumumab is a non-invasive method that could characterize EGFR expression in tumors and metastatic lesions.
View Article and Find Full Text PDFDrought provokes a number of physiological changes in plants including oxidative damage. Ascorbic acid (AsA), also known as vitamin C, is one of the most abundant water-soluble antioxidant compound present in plant tissues. However, little is known on the regulation of AsA biosynthesis under drought stress conditions.
View Article and Find Full Text PDFThe purpose of this study was to evaluate F-FDG PET/CT scanning as an early predictor of response to immune checkpoint inhibitors (ICIs) in patients with advanced melanoma. Twenty patients with advanced melanoma receiving ICI prospectively underwent F-FDG PET/CT at 3 scan intervals: before treatment initiation (SCAN-1), at days 21-28 (SCAN-2), and at 4 mo (SCAN-3). This study was approved by the institutional review board, and informed consent was received from all patients who were enrolled between April 2012 and December 2013.
View Article and Find Full Text PDFDrought stress hampers plant energy and biomass production; however it is still unknown how internal C:N balance and rhizobial symbiosis impact on plant response to water limitation. Here, the effect of differential optimal nitrogen nutrition and root nodule symbiosis on drought stress and rehydration responses of Medicago truncatula was assessed. Two groups of plants were nodulated with Sinorhizobium medicae or Sinorhizobium meliloti--differing in the performance of N fixation; the third group grew in a rhizobia-free medium and received mineral nitrogen fertilizer.
View Article and Find Full Text PDFLegume crops present important agronomical and environmental advantages mainly due to their capacity to reduce atmospheric N2 to ammonium via symbiotic nitrogen fixation (SNF). This process is very sensitive to abiotic stresses such as drought, but the mechanism underlying this response is not fully understood. The goal of the current work is to compare the drought response of two legumes with high economic impact and research importance, Medicago truncatula and Glycine max, by characterizing their root nodule proteomes.
View Article and Find Full Text PDFThe symbiotic association between Medicago truncatula and Sinorhizobium meliloti is a well-established model system in the legume-Rhizobium community. Despite its wide use, the symbiotic efficiency of this model has been recently questioned and an alternative microsymbiont, S. medicae, has been proposed.
View Article and Find Full Text PDFSplit-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria.
View Article and Find Full Text PDFDrought is considered the more harmful abiotic stress resulting in crops yield loss. Legumes in symbiosis with rhizobia are able to fix atmospheric nitrogen. Biological nitrogen fixation (SNF) is a very sensitive process to drought and limits legumes agricultural productivity.
View Article and Find Full Text PDFSymbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to water-deficit conditions.
View Article and Find Full Text PDFDrought stress is a major factor limiting symbiotic nitrogen fixation (NF) in soybean crop production. However, the regulatory mechanisms involved in this inhibition are still controversial. Soybean plants were symbiotically grown in a split-root system (SRS), which allowed for half of the root system to be irrigated at field capacity while the other half remained water deprived.
View Article and Find Full Text PDFDrought stress is a major factor limiting nitrogen fixation (NF) in crop production. However, the regulatory mechanism involved and the origin of the inhibition, whether local or systemic, is still controversial and so far scarcely studied in temperate forage legumes. Medicago truncatula plants were symbiotically grown with a split-root system and exposed to gradual water deprivation.
View Article and Find Full Text PDFMol Plant Microbe Interact
February 2013
The Medicago truncatula DMI2 gene encodes a leucine-rich repeat receptor-like kinase that is essential for symbiosis with nitrogen-fixing rhizobia. While phenotypic analyses have provided a description for the host's responses mediated by DMI2, a lack of tools for in vivo biochemical analysis has hampered efforts to elucidate the mechanisms by which DMI2 mediates symbiotic signal transduction. Here, we report stably transformed M.
View Article and Find Full Text PDFEvolutionary diversity can be driven by the interaction of plants with different environments. Molecular bases involved in ecological adaptations to abiotic constraints can be explored using genomic tools. Legumes are major crops worldwide and soil salinity is a main stress affecting yield in these plants.
View Article and Find Full Text PDFRegulation of symbiotic nitrogen fixation (SNF) during drought stress is complex and not yet fully understood. In the present work, the involvement of nodule C and N metabolism in the regulation of SNF in Medicago truncatula under drought and a subsequent rewatering treatment was analyzed using a combination of metabolomic and proteomic approaches. Drought induced a reduction of SNF rates and major changes in the metabolic profile of nodules, mostly an accumulation of amino acids (Pro, His, and Trp) and carbohydrates (sucrose, galactinol, raffinose, and trehalose).
View Article and Find Full Text PDFMass spectrometry (MS) has become increasingly important for tissue specific protein quantification at the isoform level, as well as for the analysis of protein post-translational regulation mechanisms and turnover rates. Thanks to the development of high accuracy mass spectrometers, peptide sequencing without prior knowledge of the amino acid sequence--de novo sequencing--can be performed. In this work, absolute quantification of a set of key enzymes involved in carbon and nitrogen metabolism in Medicago truncatula 'Jemalong A17' root nodules is presented.
View Article and Find Full Text PDFNitrogen fixation (NF) in legume nodules is very sensitive to environmental constraints. Nodule sucrose synthase (SS; EC 2.4.
View Article and Find Full Text PDFNitrogen fixation in legumes is dramatically inhibited by abiotic stresses, and this reduction is often associated with oxidative damage. Although ascorbate (ASC) has been firmly associated with antioxidant defence, recent studies have suggested that the functions of ASC are related primarily to developmental processes. This study examines the hypothesis that ASC is involved in alleviating the oxidative damage to nodules caused by an increase in reactive oxygen species (ROS) under water stress.
View Article and Find Full Text PDFNitrogen fixation (NF) in soybean (Glycine max L. Merr.) is highly sensitive to soil drying.
View Article and Find Full Text PDFDrought is one of the environmental factors most affecting crop production. Under drought, symbiotic nitrogen fixation is one of the physiological processes to first show stress responses in nodulated legumes. This inhibition process involves a number of factors whose interactions are not yet understood.
View Article and Find Full Text PDF