Publications by authors named "Esther Lizano"

Ancient tooth enamel, and to some extent dentin and bone, contain characteristic peptides that persist for long periods of time. In particular, peptides from the enamel proteome (enamelome) have been used to reconstruct the phylogenetic relationships of fossil taxa. However, the enamelome is based on only about 10 genes, whose protein products undergo fragmentation in vivo and post mortem.

View Article and Find Full Text PDF

Ecological variation and anthropogenic landscape modification have had key roles in the diversification and extinction of mammals in Madagascar. Lemurs represent a radiation with more than 100 species, constituting roughly one-fifth of the primate order. Almost all species of lemurs are threatened with extinction, but little is known about their genetic diversity and demographic history.

View Article and Find Full Text PDF

Natural history museum collections harbour a record of wild species from the past centuries, providing a unique opportunity to study animals as well as their infectious agents. Thousands of great ape specimens are kept in these collections, and could become an important resource for studying the evolution of DNA viruses. Their genetic material is likely to be preserved in dry museum specimens, as reported previously for monkeypox virus genomes from historical orangutan specimens.

View Article and Find Full Text PDF
Article Synopsis
  • Despite the significant diversity of primates in the Amazon, genomic studies on these species are underrepresented, particularly for uakari monkeys.
  • This study presents the first comprehensive population-level genomic analysis of eight uakari species, revealing that bald and black uakaris have remained genetically distinct since their separation 0.92 million years ago, with unique genetic traits and variations related to pathogens.
  • The research suggests that environmental factors, like hydrology and geographic barriers, have influenced the genetic structure of these uakari populations, contributing to a better understanding of primate genomics in the Amazon rainforest.
View Article and Find Full Text PDF

The Xerces Blue () is considered to be the first butterfly to become extinct in historical times. It was notable for its chalky lavender wings with conspicuous white spots on the ventral wings. The last individuals were collected in their restricted habitat, in the dunes near the Presidio military base in San Francisco, in 1941.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists study how animals change to survive in different places, which is really important for understanding biology.
  • They looked at chimpanzees, our closest relatives, who live in many types of environments like rainforests and savannahs.
  • By examining genetic information from wild chimpanzees, they discovered that some chimps have adapted to fight off malaria in similar ways to humans, showing how important genetic diversity is for endangered animals.
View Article and Find Full Text PDF
Article Synopsis
  • Noncoding DNA helps scientists understand how genes work and how they relate to diseases in humans.
  • Researchers studied the DNA of many primates to find specific regulatory parts that are important for gene regulation.
  • They discovered a lot of these regulatory elements in humans that are different from those in other mammals, which can help explain human traits and health issues.
View Article and Find Full Text PDF

Recent advances in long-read sequencing technologies have allowed the generation and curation of more complete genome assemblies, enabling the analysis of traditionally neglected chromosomes, such as the human Y chromosome (chrY). Native DNA was sequenced on a MinION Oxford Nanopore Technologies sequencing device to generate genome assemblies for seven major chrY human haplogroups. We analyzed and compared the chrY enrichment of sequencing data obtained using two different selective sequencing approaches: adaptive sampling and flow cytometry chromosome sorting.

View Article and Find Full Text PDF

The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families.

View Article and Find Full Text PDF

Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans.

View Article and Find Full Text PDF

Unlabelled: Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole genome sequencing data for 809 individuals from 233 primate species, and identified 4.3 million common protein-altering variants with orthologs in human.

View Article and Find Full Text PDF

The critically endangered western gorillas () are divided into two subspecies: the western lowland () and the Cross River () gorilla. Given the difficulty in sampling wild great ape populations and the small estimated size of the Cross River gorilla population, only one whole genome of a Cross River gorilla has been sequenced to date, hindering the study of this subspecies at the population level. In this study, we expand the number of whole genomes available for wild western gorillas, generating 41 new genomes (25 belonging to Cross River gorillas) using single shed hairs collected from gorilla nests.

View Article and Find Full Text PDF

The Y chromosome can yield a unique perspective into the study of human demographic history. However, due to the repetitive nature of part of its sequence, only a small set of regions are suitable for variant calling and discovery from short-read sequencing data. These regions combined represent 8.

View Article and Find Full Text PDF

The analysis of biomarkers in biological fluids, also known as liquid biopsies, is seen with great potential to diagnose complex diseases such as cancer with a high sensitivity and minimal invasiveness. Although it can target any biomolecule, most liquid biopsy studies have focused on circulating nucleic acids. Historically, studies have aimed at the detection of specific mutations on cell-free DNA (cfDNA), but recently, the study of cell-free RNA (cfRNA) has gained traction.

View Article and Find Full Text PDF

Transcriptomic diversity greatly contributes to the fundamentals of disease, lineage-specific biology, and environmental adaptation. However, much of the actual isoform repertoire contributing to shaping primate evolution remains unknown. Here, we combined deep long- and short-read sequencing complemented with mass spectrometry proteomics in a panel of lymphoblastoid cell lines (LCLs) from human, three other great apes, and rhesus macaque, producing the largest full-length isoform catalog in primates to date.

View Article and Find Full Text PDF
Article Synopsis
  • This study provides the first comprehensive catalog of chimpanzee genetic diversity using non-invasive samples collected from 48 sites in Africa, focusing on chromosome 21.
  • The research reveals clear genetic differences among the four recognized chimpanzee subspecies and indicates unexpected local genetic exchanges, while also mapping patterns of population isolation, migration, and connectivity.
  • Unlike humans, chimpanzees lack a history of long-distance migrations, which may affect their cultural transmission, and the study introduces a precise geolocation method for identifying the origins of confiscated chimpanzees.
View Article and Find Full Text PDF

Natural history museums hold vast collections of biomaterials. The collections in museums, often painstakingly sampled, are largely unexplored treasures that may help us better understand biodiversity on the planet. Museum collections can provide a unique window into the past of species long gone or currently declining due to human activity.

View Article and Find Full Text PDF

Captive breeding programmes represent the most intensive type of ex situ population management for threatened species. One example is the Cuvier's gazelle programme that started in 1975 with only four founding individuals, and after more than four decades of management in captivity, a reintroduction effort was undertaken in Tunisia in 2016, to establish a population in an area historically included within its range. Here, we aim to determine the genetic consequences of this reintroduction event by assessing the genetic diversity of the founder stock as well as of their descendants.

View Article and Find Full Text PDF

The Asian Central Steppe, consisting of current-day Kazakhstan and Russia, has acted as a highway for major migrations throughout history. Therefore, describing the genetic composition of past populations in Central Asia holds value to understanding human mobility in this pivotal region. In this study, we analyse paleogenomic data generated from five humans from Kuygenzhar, Kazakhstan.

View Article and Find Full Text PDF

Evolution of vertebrate endemics in oceanic islands follows a predictable pattern, known as the island rule, according to which gigantism arises in originally small-sized species and dwarfism in large ones. Species of extinct insular giant rodents are known from all over the world. In the Canary Islands, two examples of giant rats, † and †, endemic to Tenerife and Gran Canaria, respectively, disappeared soon after human settlement.

View Article and Find Full Text PDF

Ancient pathogen genomics is an emerging field allowing reconstruction of past epidemics. The demise of post-contact American populations may, at least in part, have been caused by paratyphoid fever brought by Europeans. We retrieved genome-wide data from two Spanish soldiers who were besieging the city of Barcelona in 1652, during the Reapers' War.

View Article and Find Full Text PDF

The novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global disruption and more than 2 million fatalities since it first emerged in late 2019. As we write, infection rates are at their highest point globally and are rising extremely rapidly in some areas due to more infectious variants. The primary target of SARS-CoV-2 is the cellular receptor angiotensin-converting enzyme-2 (ACE2).

View Article and Find Full Text PDF

Background: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells.

View Article and Find Full Text PDF

Ecological flexibility, extended lifespans, and large brains have long intrigued evolutionary biologists, and comparative genomics offers an efficient and effective tool for generating new insights into the evolution of such traits. Studies of capuchin monkeys are particularly well situated to shed light on the selective pressures and genetic underpinnings of local adaptation to diverse habitats, longevity, and brain development. Distributed widely across Central and South America, they are inventive and extractive foragers, known for their sensorimotor intelligence.

View Article and Find Full Text PDF

The novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global disruption and more than 1.5 million fatalities since it first emerged in late 2019. As we write, infection rates are currently at their highest point globally and are rising extremely rapidly in some areas due to more infectious variants.

View Article and Find Full Text PDF