Background: Chronic kidney disease (CKD) affects many people worldwide and early diagnosis is essential for successful treatment and improved outcome. Unfortunately, current methods are insufficient especially for early disease detection. However, advances in the analytical methods for urinary biomarkers may provide a unique opportunity for diagnosis and management of CKD.
View Article and Find Full Text PDFBackground: Although the incidence of positive resection margins in breast-conserving surgery has decreased, both incomplete resection and unnecessary large resections still occur. This is especially the case in the surgical treatment of ductal carcinoma in situ (DCIS). Diffuse reflectance spectroscopy (DRS), an optical technology based on light tissue interactions, can potentially characterize tissue during surgery thereby guiding the surgeon intraoperatively.
View Article and Find Full Text PDFThe main curative treatment for localized colon cancer is surgical resection. However when tumor residuals are left positive margins are found during the histological examinations and additional treatment is needed to inhibit recurrence. Hyperspectral imaging (HSI) can offer non-invasive surgical guidance with the potential of optimizing the surgical effectiveness.
View Article and Find Full Text PDFComplete tumor removal during breast-conserving surgery remains challenging due to the lack of optimal intraoperative margin assessment techniques. Here, we use hyperspectral imaging for tumor detection in fresh breast tissue. We evaluated different wavelength ranges and two classification algorithms; a pixel-wise classification algorithm and a convolutional neural network that combines spectral and spatial information.
View Article and Find Full Text PDFFor the validation of optical diagnostic technologies, experimental results need to be benchmarked against the gold standard. Currently, the gold standard for tissue characterization is assessment of hematoxylin and eosin (H&E)-stained sections by a pathologist. When processing tissue into H&E sections, the shape of the tissue deforms with respect to the initial shape when it was optically measured.
View Article and Find Full Text PDFHyperspectral imaging is a promising technique for resection margin assessment during cancer surgery. Thereby, only a specific amount of the tissue below the resection surface, the clinically defined margin width, should be assessed. Since the imaging depth of hyperspectral imaging varies with wavelength and tissue composition, this can have consequences for the clinical use of hyperspectral imaging as margin assessment technique.
View Article and Find Full Text PDFPurpose: Complete tumor removal during cancer surgery remains challenging due to the lack of accurate techniques for intraoperative margin assessment. This study evaluates the use of hyperspectral imaging for margin assessment by reporting its use in fresh human breast specimens.
Experimental Design: Hyperspectral data were first acquired on tissue slices from 18 patients after gross sectioning of the resected breast specimen.
The biannual International Conference on Biophotonics was recently held on April 30 to May 1, 2017, in Fremantle, Western Australia. This continuing conference series brought together key opinion leaders in biophotonics to present their latest results and, importantly, to participate in discussions on the future of the field and what opportunities exist when we collectively work together for using biophotonics for biological discovery and medical applications. One session in this conference, entitled "Tumor Margin Identification: Critiquing Technologies," challenged invited speakers and attendees to review and critique representative label-free optical imaging technologies and their application for intraoperative assessment and guidance in surgical oncology.
View Article and Find Full Text PDF