Vulvodynia is a prevalent chronic pain disorder associated with high medical costs and often ineffective treatments. The major pathological feature is proliferation of vaginal nerve fibers. This study aimed to develop a highly reproducible animal model to study neuroproliferation in the vagina and aid the identification of appropriately targeted treatments for conditions such as vulvodynia.
View Article and Find Full Text PDFBackground: Peptidergic nerve fibers provide important contributions to urethral function. Urethral innervation of female mice is not well documented.
Aims: To determine the distribution and projection sites of nerve fibers immunoreactive for vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), substance P (SP), and neuropeptide Y (NPY) in the urethra of wild-type control mice and compare innervation characteristics between the proximal and distal urethra of young nullipara and older multipara mice.
The vagina is innervated by a complex arrangement of sensory, sympathetic, and parasympathetic nerve fibers that contain classical transmitters plus an array of neuropeptides and enzymes known to regulate diverse processes including blood flow and nociception. The neurochemical characteristics and distributions of peptide-containing nerves in the mouse vagina are unknown. This study used multiple labeling immunohistochemistry, confocal maging and analysis to investigate the presence and colocalization of the peptides vasoactive intestinal polypeptide (VIP), calcitonin-gene related peptide (CGRP), substance P (SP), neuropeptide tyrosine (NPY), and the nitric oxide synthesizing enzyme neuronal nitric oxide synthase (nNOS) in nerve fibers of the murine vaginal wall.
View Article and Find Full Text PDF