The functional equivalence (FE) between imagery and perception or motion has been proposed on the basis of neuroimaging evidence of large spatially overlapping activations between real and imagined sensori-motor conditions. However, similar local activation patterns do not imply the same mesoscopic integration of brain regions, which can be described by tools from Topological Data Analysis (TDA). On the basis of behavioral findings, stronger FE has been hypothesized in the individuals with high scores of hypnotizability scores (highs) with respect to low hypnotizable participants (lows) who differ between each other in the proneness to modify memory, perception and behavior according to specific imaginative suggestions.
View Article and Find Full Text PDFIntroduction: The aim of this exploratory study was to assess the EEG correlates of head positions (which have never been studied in humans) in participants with different psychophysiological characteristics, as encoded by their hypnotizability scores. This choice is motivated by earlier studies suggesting different processing of vestibular/neck proprioceptive information in subjects with high (highs) and low (lows) hypnotizability scores maintaining their head rotated toward one side (RH).
Methods: We analyzed EEG signals recorded in 20 highs and 19 lows in basal conditions (head forward) and during RH using spectral analysis, which captures changes localized to specific recording sites, and topological data analysis (TDA), which instead describes large-scale differences in processing and representing sensorimotor information.
The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value.
View Article and Find Full Text PDFThe success of biological signal pattern recognition depends crucially on the selection of relevant features. Across signal and imaging modalities, a large number of features have been proposed, leading to feature redundancy and the need for optimal feature set identification. A further complication is that, due to the inherent biological variability, even the same classification problem on different datasets can display variations in the respective optimal sets, casting doubts on the generalizability of relevant features.
View Article and Find Full Text PDFWe study the problem of evolutionary escape that is the process whereby a population under sudden changes in the selective pressures acting upon it try to evade extinction by evolving from previously well-adapted phenotypes to those that are favoured by the new selective pressure. We perform a comparative analysis between results obtained by modelling genotype space as a regular hypercube (H-graphs), which is the scenario considered in previous work on the subject, to those corresponding to a complex genotype-phenotype network (B-graphs). In order to analyse the properties of the escape process on both these graphs, we apply a general theory based on multi-type branching processes to compute the evolutionary dynamics and probability of escape.
View Article and Find Full Text PDFWe study the problem of evolutionary escape and survival of cell populations with a genotype-phenotype structure. We refer to evolutionary escape as the process where a cell of a given ill-adapted population to reach a well-adapted phenotype. Similarly, survival refers to the dynamics of the population once the escape phenotype has been reached.
View Article and Find Full Text PDFBackground: The reconstruction of the phylogenetic tree topology of four taxa is, still nowadays, one of the main challenges in phylogenetics. Its difficulties lie in considering not too restrictive evolutionary models, and correctly dealing with the long-branch attraction problem. The correct reconstruction of 4-taxon trees is crucial for making quartet-based methods work and being able to recover large phylogenies.
View Article and Find Full Text PDFIn this paper we formulate a topological definition of the concepts of robustness and evolvability. We start our investigation by formulating a multiscale model of the evolutionary dynamics of a population of cells. Our cells are characterised by a genotype-phenotype map: their chances of survival under selective pressure are determined by their phenotypes, whereas the latter are determined their genotypes.
View Article and Find Full Text PDF