Publications by authors named "Esther Garcia-Palomero"

Tacrine-melatonin hybrids were designed and synthesized as new multifunctional drug candidates for Alzheimer's disease. These compounds may simultaneously palliate intellectual deficits and protect the brain against both beta-amyloid (A beta) peptide and oxidative stress. They show improved cholinergic and antioxidant properties, and are more potent and selective inhibitors of human acetylcholinesterase (hAChE) than tacrine.

View Article and Find Full Text PDF

The therapeutic potential of acetylcholinesterase (AChE) inhibitors has been strengthened recently by evidence showing that besides their role in cognitive function, they might contribute to slow down the neurodegeneration in Alzheimer's disease (AD) patients. It is known that AChE exerts secondary noncholinergic functions, related to its peripheral anionic site, in cell adhesion and differentiation, and recent findings also support its role in mediating the processing and deposition of beta-amyloid (Abeta) peptide. AChE is one of the proteins that colocalizes with Abeta peptide deposits in the brain of AD patients and promotes Abeta fibrillogenesis by forming stable AChEA beta complexes.

View Article and Find Full Text PDF

Four new manzamine-type alkaloids, 12,28-oxamanzamine E (2), 12,34-oxa-6-hydroxymanzamine E (3), 8-hydroxymanzamine B (5), and 12,28-oxaircinal A (11), were isolated from three collections of an Indonesian sponge of the genus Acanthostrongylophora together with 13 known manzamine alkaloids, ircinal A, ircinol A, xestomanzamine A, manzamines A, E, F, J, and Y, manadomanzamines A and B, neo-kauluamine, 8-hydroxymanzamine A, and manzamine A N-oxide. The structures of the new compounds were elucidated by means of 1D and 2D NMR spectroscopic methods. Three of these compounds (2, 3, and 11) possess a unique manzamine-type aminal ring system generated through an ether linkage between carbons 12-28 or between carbons 12-34.

View Article and Find Full Text PDF

New dual binding site acetylcholinesterase (AChE) inhibitors have been designed and synthesized as new potent drugs that may simultaneously alleviate cognitive deficits and behave as disease-modifying agents by inhibiting the beta-amyloid (A beta) peptide aggregation through binding to both catalytic and peripheral sites of the enzyme. Particularly, compounds 5 and 6 emerged as the most potent heterodimers reported so far, displaying IC50 values for AChE inhibition of 20 and 60 pM, respectively. More importantly, these dual AChE inhibitors inhibit the AChE-induced A beta peptide aggregation with IC50 values 1 order of magnitude lower than that of propidium, thus being the most potent derivatives with this activity reported up to date.

View Article and Find Full Text PDF

The synthesis of tacrine-thiadiazolidinone hybrids is described. These compounds are designed as dual acetylcholinesterase inhibitors binding simultaneously to the peripheral and catalytic sites of the enzyme. All tested compounds exhibit significant AChE inhibitory activity.

View Article and Find Full Text PDF

DNA polymerase mu (Pol mu) is a DNA-dependent DNA polymerase closely related to terminal deoxynucleotidyl transferase (TdT), and prone to induce template/primer misalignments and misincorporation. In addition to a proposed general role in non-homologous end joining of double-strand breaks, its mutagenic potential and preferential expression in secondary lymphoid tissues support a role in somatic hypermutation (SHM) of immunoglobulin genes. Here, we show that human Pol mu protein is expressed in the nucleus of centroblasts obtained from human tonsils, forming a characteristic foci pattern resembling that of other DNA repair proteins in response to DNA damage.

View Article and Find Full Text PDF

DNA polymerase lambda (pol lambda) is a novel family X DNA polymerase that has been suggested to play a role in meiotic recombination and DNA repair. The recent demonstration of an intrinsic 5'-deoxyribose-5-phosphate lyase activity in pol lambda supports a function of this enzyme in base excision repair. However, the biochemical properties of the polymerization activity of this enzyme are still largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Catestatin, a fragment of chromogranin A, is the first known natural inhibitor of catecholamine release by blocking activation of neuronal nicotinic acetylcholine receptors (nAChRs) across various species and cell types.
  • This study investigates catestatin's effects on nAChR subunit combinations and its role in regulating intracellular calcium levels and catecholamine release in adrenal chromaffin cells.
  • Results indicate that catestatin effectively blocks all nAChR subtypes tested, reducing intracellular calcium and catecholamine release without impacting the final stages of exocytosis, suggesting a complex regulatory role in neuroendocrine secretion based on the intensity of stimulation.
View Article and Find Full Text PDF