Publications by authors named "Esther D Ellen"

Impaired walking ability and leg health are commonly seen in broilers and can negatively impact their welfare. Commonly, walking ability and leg health are assessed manually, but this is time consuming and can be subjective. Automated approaches for scoring walking ability and leg health at the individual level could therefore have great added value.

View Article and Find Full Text PDF

Heat stress in broilers is a pressing issue in the changing climate. Data on broiler behavior might be useful for early detection of heat stress and subsequent intervention, and may provide potential indicators for heat tolerance that can be used in broiler breeding programs. Here, we used bird location data collected in a previous study during which broilers were inadvertently exposed to high ambient temperatures due to a local heat wave.

View Article and Find Full Text PDF

Background: There is increasing interest in using intestinal organoids to study complex traits like feed efficiency (FE) and host-microbe interactions. The aim of this study was to investigate differences in the molecular phenotype of organoids derived from pigs divergent for FE as well as their responses to challenge with adherent and invasive Escherichia coli (E. coli).

View Article and Find Full Text PDF

Walking ability of broilers can be improved by selective breeding, but large-scale phenotypic records are required. Currently, gait of individual broilers is scored by trained experts, however, precision phenotyping tools could offer a more objective and high-throughput alternative. We studied whether specific walking characteristics determined through pose estimation are linked to gait in broilers.

View Article and Find Full Text PDF

Fast-growing broilers are relatively inactive and this is thought to be a result of selection for high growth rates. This reduced activity level is considered a major cause of leg weakness and associated leg health problems. Increased activity, especially early in life, is suggested to have positive effects on leg health, but the relationship between early activity and growth is unclear.

View Article and Find Full Text PDF

Livestock feed encompasses both human edible and human inedible components. Human edible feed components may become less available for livestock. Especially for proteins, this calls for action.

View Article and Find Full Text PDF

Gait, or walking ability, is an often-measured trait in broilers. Individual gait scores are generally determined manually, which can be time-consuming and subjective. Automated methods of scoring gait are available, but are often implemented at the group level.

View Article and Find Full Text PDF

Organoids are self-organizing, self-renewing three-dimensional cellular structures that resemble organs in structure and function. They can be derived from adult stem cells, embryonic stem cells, or induced pluripotent stem cells. They contain most of the relevant cell types with a topology and cell-to-cell interactions resembling that of the in vivo tissue.

View Article and Find Full Text PDF

Individual data are valuable for assessing the health, welfare and performance of broilers. In particular, data on the first few days of life are needed to study the predictive value of traits recorded early in life for later life performance. However, broilers are generally kept in groups, which hampers individual identification and monitoring of animals.

View Article and Find Full Text PDF

Individual data on activity of broilers is valuable, as activity may serve as a proxy for multiple health, welfare and performance indicators. However, broilers are often kept in large groups, which makes it difficult to identify and monitor them individually. Sensor technologies might offer solutions.

View Article and Find Full Text PDF

Mortality due to feather pecking (FP) has large economic and welfare consequences in the commercial poultry industry, and reduces survival of birds. With FP, the survival time of a hen depends both on her own genetic ability to avoid becoming the victim of FP (direct genetic effect; DGE), and on the genetic tendency of her group mates to perform FP (indirect genetic effect; IGE). Thus, to improve survival time of laying hens, it is important to use a breeding strategy that captures both the DGE and the IGE of selection candidates.

View Article and Find Full Text PDF

Damaging behaviors, like feather pecking (FP), have large economic and welfare consequences in the commercial laying hen industry. Selective breeding can be used to obtain animals that are less likely to perform damaging behavior on their pen-mates. However, with the growing tendency to keep birds in large groups, identifying specific birds that are performing or receiving FP is difficult.

View Article and Find Full Text PDF

Background: Cannibalism is an important welfare problem in the layer industry. Cannibalism is a social behavior where individual survival is affected by direct genetic effects (DGE) and indirect genetic effects (IGE). Previous studies analysed repeated binomial survival, instead of survival time, which improved accuracies of breeding value predictions.

View Article and Find Full Text PDF

Indirect genetic effects (IGEs) are the basis of social interactions among conspecifics, and can affect genetic variation of nonsocial and social traits. We used flour beetles (Tribolium castaneum) of two phenotypically distinguishable populations to estimate genetic (co)variances and the effect of IGEs on three life-history traits: development time (DT), growth rate (GR), and pupal body mass (BM). We found that GR was strongly affected by social environment with IGEs accounting for 18% of the heritable variation.

View Article and Find Full Text PDF

Background: Minimizing bird losses is important in the commercial layer industry. Selection against mortality is challenging because heritability is low, censoring is high, and individual survival depends on social interactions among cage members. With cannibalism, mortality depends not only on an individual's own genes (direct genetic effects; DGE) but also on genes of its cage mates (indirect genetic effects; IGE).

View Article and Find Full Text PDF

Social interactions between individuals living in a group can have both positive and negative effects on welfare, productivity, and health of these individuals. Negative effects of social interactions in livestock are easier to observe than positive effects. For example, laying hens may develop feather pecking, which can cause mortality due to cannibalism, and pigs may develop tail biting or excessive aggression.

View Article and Find Full Text PDF

Background: Feather pecking is a major welfare issue in laying hen industry that leads to mortality. Due to a ban on conventional cages in the EU and on beak trimming in some countries of the EU, feather pecking will become an even bigger problem. Its severity depends both on the victim receiving pecking and on its group mates inflicting pecking (indirect effects), which together determine plumage condition of the victim.

View Article and Find Full Text PDF

Feather pecking (FP) in laying hens may cause mortality due to cannibalism. Novel breeding methods using survival days of group-housed siblings allow for the genetic selection of laying hens with low mortality (LML: low mortality line) due to cannibalism. Previous studies have demonstrated less fear-related behavior and also less FP in LML hens compared to CL.

View Article and Find Full Text PDF

Severe feather pecking (SFP) in laying hens is a detrimental behavior causing loss of feathers, skin damage and cannibalism. Previously, we have associated changes in frontal brain serotonin (5-HT) turnover and dopamine (DA) turnover with alterations in feather pecking behavior in young pullets (28-60 days). Here, brain monoamine levels were measured in adult laying hens; focusing on four brain areas that are involved in emotional behavior or are part of the basal ganglia-thalamopallial circuit, which is involved in obsessive compulsive disorders.

View Article and Find Full Text PDF

Background: Through social interactions, individuals affect one another's phenotype. In such cases, an individual's phenotype is affected by the direct (genetic) effect of the individual itself and the indirect (genetic) effects of the group mates. Using data on individual phenotypes, direct and indirect genetic (co)variances can be estimated.

View Article and Find Full Text PDF

Fearfulness of an individual can affect its sensitivity to stress, while at the same time the social situation in which an animal lives can affect its fear level. It is however unknown what the long-term effects of high fearfulness on sensitivity to stress are, on individual or group level in laying hens. We hypothesize that increased fearfulness at a young age results in increased sensitivity to stress at an adult age, and that this relation can differ between groups, due to differences in group composition.

View Article and Find Full Text PDF

Social interactions, especially those involving competition among individuals, are important in domesticated livestock and in natural populations. The heritability of traits affected by such interactions has two components, one originating in the individual like that of classical traits (direct effects) and the other originating in other group members (indirect effects). The latter type of trait represents a significant source of 'hidden heritability' and it requires population structure and knowledge from relatives in order to access it for selective breeding.

View Article and Find Full Text PDF

Background: Mortality due to cannibalism in laying hens is a difficult trait to improve genetically, because censoring is high (animals still alive at the end of the testing period) and it may depend on both the individual itself and the behaviour of its group members, so-called associative effects (social interactions). To analyse survival data, survival analysis can be used. However, it is not possible to include associative effects in the current software for survival analysis.

View Article and Find Full Text PDF

The aim of the present study was to investigate the effect of brooding and group selection for low mortality on post-stress corticosterone and peripheral serotonin in laying hens. Birds in the experiment originated from the same population and were either group-selected for low mortality (low mortality line) or randomly selected (control line) for two generations. Twelve groups of seven birds from each line were used.

View Article and Find Full Text PDF

Severe feather pecking is a maladaptive behavior in laying hens that may result in cannibalism and ultimately death of the victims. Selection methods in which the genetic effect of an animal on the survival of its group members is taken into account, i.e.

View Article and Find Full Text PDF