Short-wavelength-sensitive (SWS) resolution acuity has been reported to be limited by the density of the responding ganglion cells for people without appreciable age-related lenticular change. This study measured the robustness of SWS-cone acuity and contrast sensitivity (CS) to simulated lens yellowing and opacification. Resolution acuity at 8 deg eccentricity proved robust to significant amounts of yellowing and remained lower than detection acuity, indicating that the resolution continued to be limited by ganglion cell density.
View Article and Find Full Text PDFPrevious studies have indicated that peripheral resolution for achromatic gratings is sampling limited and directly related to the density of the underlying midget ganglion cell population. Previous studies by the authors have shown that peripheral resolution for blue-cone isolating gratings is also sampling limited, is robust to optical defocus and short-wavelength attenuation, and yields estimates of sampling density which correspond closely with the density of small bistratified ganglion cells. We measured peripheral resolution in a group of normal subjects ranging in age from 12 to 72 years, using both achromatic and blue-cone isolating gratings, to determine how performance (and hence ganglion cell density) changed with age for both systems.
View Article and Find Full Text PDFPrevious studies have indicated that peripheral achromatic grating resolution is limited by the sampling density of the neural array (sampling limited), and largely unaffected by large amounts of optical defocus and significant changes in luminance. Under certain conditions, peripheral short-wavelength sensitive (SWS) grating acuity is also sampling limited. We wished to determine how the sampling-limited nature of SWS-driven grating resolution was affected by changing optical defocus and stimulus luminance.
View Article and Find Full Text PDF