Publications by authors named "Esther C W Breij"

Unlabelled: Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type that arises in the squamous epithelial cells lining the mucosal surfaces of the upper aerodigestive tract. Long-term survival of patients with advanced disease stage remains disappointing with current treatment options. We show that tissue factor is abundantly expressed on patient-derived HNSCC cell lines, xenograft tumor material, and tumor biopsies from patients with HNSCC.

View Article and Find Full Text PDF

Background: HexaBody®-CD38 (GEN3014) is a hexamerization-enhanced human IgG1 that binds CD38 with high affinity. The E430G mutation in its Fc domain facilitates the natural process of antibody hexamer formation upon binding to the cell surface, resulting in increased binding of C1q and potentiated complement-dependent cytotoxicity (CDC).

Methods: Co-crystallization studies were performed to identify the binding interface of HexaBody-CD38 and CD38.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic lymphocytic leukemia (CLL) is a challenging disease that leads to a weakened immune system and makes patients more prone to infections and less responsive to immunotherapies; however, new treatments with BTK inhibitors and venetoclax have shown promise in improving outcomes.
  • Epcoritamab, a bispecific antibody that targets both CD3 and CD20, has shown strong clinical effects in treating relapsed non-Hodgkin lymphoma and is being studied for its potential to enhance CLL therapy, particularly when combined with existing treatments.
  • Research indicates that epcoritamab promotes T-cell activity and can effectively reduce CLL cellular presence in mouse models, making it a promising candidate for combination therapy with BTK inhibitors
View Article and Find Full Text PDF
Article Synopsis
  • Elevated tissue factor (TF) expression is linked to poor prognosis in various solid cancers, with a systematic analysis conducted to compare its prevalence and localization across multiple tumor types for the first time.
  • The study involved patient biopsies from different cancers, revealing that TF was most prominent in pancreatic, cervical, colon, glioblastoma, head and neck squamous cell carcinoma, and non-small cell lung cancer, with varying expression patterns noted in individual cases.
  • Findings indicate that while TF is widely present across solid tumors and remains consistent over time for most patients, individual variability exists, suggesting potential implications for disease progression and treatment.
View Article and Find Full Text PDF

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.

View Article and Find Full Text PDF

Background: Despite the preclinical promise of CD40 and 4-1BB as immuno-oncology targets, clinical efforts evaluating CD40 and 4-1BB agonists as monotherapy have found limited success. DuoBody-CD40×4-1BB (GEN1042/BNT312) is a novel investigational Fc-inert bispecific antibody for dual targeting and conditional stimulation of CD40 and 4-1BB to enhance priming and reactivation of tumor-specific immunity in patients with cancer.

Methods: Characterization of DuoBody-CD40×4-1BB in vitro was performed in a broad range of functional immune cell assays, including cell-based reporter assays, T-cell proliferation assays, mixed-lymphocyte reactions and tumor-infiltrating lymphocyte assays, as well as live-cell imaging.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis have changed the treatment paradigm for advanced solid tumors; however, many patients experience treatment resistance. In preclinical models 4-1BB co-stimulation synergizes with ICI by activating cytotoxic T- and NK-cell-mediated anti-tumor immunity. Here we characterize the mechanism of action of a mouse-reactive Fc-inert PD-L1×4-1BB bispecific antibody (mbsAb-PD-L1×4-1BB) and provide proof-of-concept for enhanced anti-tumor activity.

View Article and Find Full Text PDF

Unlabelled: Checkpoint inhibitors (CPI) have revolutionized the treatment paradigm for advanced solid tumors; however, there remains an opportunity to improve response rates and outcomes. In preclinical models, 4-1BB costimulation synergizes with CPIs targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis by activating cytotoxic T-cell-mediated antitumor immunity. DuoBody-PD-L1×4-1BB (GEN1046) is an investigational, first-in-class bispecific immunotherapy agent designed to act on both pathways by combining simultaneous and complementary PD-L1 blockade and conditional 4-1BB stimulation in one molecule.

View Article and Find Full Text PDF

Apoptosis induction by death receptor (DR)-specific agonistic antibodies is a potentially effective antitumor therapy. Nonetheless, to date, all conventional DR-targeting antibodies that induce apoptosis via FcγR-dependent DR clustering failed to show clinical efficacy. HexaBody-DR5/DR5 (GEN1029) has been developed to overcome full FcγR dependence.

View Article and Find Full Text PDF
Article Synopsis
  • Epcoritamab is a new bispecific antibody that helps T-cells target CD20 tumor cells in B-cell non-Hodgkin lymphoma (B-NHL).
  • In preclinical studies, it effectively killed primary tumor cells from both newly diagnosed and relapsed/refractory B-NHL patients, achieving 65-84% tumor lysis across different lymphoma types.
  • The study found that T-cell activation varied among tumor cells and was negatively related to the levels of the immune checkpoint molecule HVEM, indicating that epcoritamab could be a promising treatment even for patients who did not respond to previous CD20 therapies.
View Article and Find Full Text PDF

Higher-order death receptor 5 (DR5) clustering can induce tumor cell death; however, therapeutic compounds targeting DR5 have achieved limited clinical efficacy. We describe HexaBody-DR5/DR5, an equimolar mixture of two DR5-specific IgG1 antibodies with an Fc-domain mutation that augments antibody hexamerization after cell surface target binding. The two antibodies do not compete for binding to DR5 as demonstrated using binding competition studies, and binding to distinct epitopes in the DR5 extracellular domain was confirmed by crystallography.

View Article and Find Full Text PDF

Tetraspanin CD37 has recently received renewed interest as a therapeutic target for B-cell malignancies. Although complement-dependent cytotoxicity (CDC) is a powerful Fc-mediated effector function for killing hematological cancer cells, CD37-specific antibodies are generally poor inducers of CDC. To enhance CDC, the E430G mutation was introduced into humanized CD37 monoclonal IgG1 antibodies to drive more efficient IgG hexamer formation through intermolecular Fc-Fc interactions after cell surface antigen binding.

View Article and Find Full Text PDF

Background: DuoBody®-CD3xCD20 (GEN3013) is a full-length human IgG1 bispecific antibody (bsAb) recognizing CD3 and CD20, generated by controlled Fab-arm exchange. Its Fc domain was silenced by introduction of mutations L234F L235E D265A.

Methods: T-cell activation and T-cell-mediated cytotoxicity were measured by flow cytometry following co-culture with tumour cells.

View Article and Find Full Text PDF

CD20 monoclonal antibody therapies have significantly improved the outlook for patients with B-cell malignancies. However, many patients acquire resistance, demonstrating the need for new and improved drugs. We previously demonstrated that the natural process of antibody hexamer formation on targeted cells allows for optimal induction of complement-dependent cytotoxicity.

View Article and Find Full Text PDF

Intratumor heterogeneity is a key factor contributing to therapeutic failure and, hence, cancer lethality. Heterogeneous tumors show partial therapy responses, allowing for the emergence of drug-resistant clones that often express high levels of the receptor tyrosine kinase AXL. In melanoma, AXL-high cells are resistant to MAPK pathway inhibitors, whereas AXL-low cells are sensitive to these inhibitors, rationalizing a differential therapeutic approach.

View Article and Find Full Text PDF

Human IgG1 type I CD20 Abs, such as rituximab and ofatumumab (OFA), efficiently induce complement-dependent cytotoxicity (CDC) of CD20 B cells by binding of C1 to hexamerized Fc domains. Unexpectedly, we found that type I CD20 Ab F(ab') fragments, as well as C1q-binding-deficient IgG mutants, retained an ability to induce CDC, albeit with lower efficiency than for whole or unmodified IgG. Experiments using human serum depleted of specific complement components demonstrated that the observed lytic activity, which we termed "accessory CDC," remained to be dependent on C1 and the classical pathway.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADC) are designed to be stable in circulation and to release potent cytotoxic drugs intracellularly following antigen-specific binding, uptake, and degradation in tumor cells. Efficient internalization and routing to lysosomes where proteolysis can take place is therefore essential. For many cell surface proteins and carbohydrate structures on tumor cells, however, the magnitude of these processes is insufficient to allow for an effective ADC approach.

View Article and Find Full Text PDF

The novel Bruton tyrosine kinase inhibitor ibrutinib and phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib are promising drugs for the treatment of chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma, either alone or in combination with anti-CD20 antibodies. We investigated the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct cell death of cell lines or chronic lymphocytic leukemia samples mediated by anti-CD20 antibodies.

View Article and Find Full Text PDF

Tissue factor (TF) is aberrantly expressed in solid cancers and is thought to contribute to disease progression through its procoagulant activity and its capacity to induce intracellular signaling in complex with factor VIIa (FVIIa). To explore the possibility of using tissue factor as a target for an antibody-drug conjugate (ADC), a panel of human tissue factor-specific antibodies (TF HuMab) was generated. Three tissue factor HuMab, that induced efficient inhibition of TF:FVIIa-dependent intracellular signaling, antibody-dependent cell-mediated cytotoxicity, and rapid target internalization, but had minimal impact on tissue factor procoagulant activity in vitro, were conjugated with the cytotoxic agents monomethyl auristatin E (MMAE) or monomethyl auristatin F (MMAF).

View Article and Find Full Text PDF

Purpose: Chronic lymphocytic leukemia (CLL) cells in lymph nodes (LN), from which relapses are postulated to originate, display an antiapoptotic profile in contrast to CLL cells from peripheral blood (PB). The BH3 mimetic ABT-737 antagonizes the antiapoptotic proteins Bcl-X(L) and Bcl-2 but not Mcl-1 or Bfl-1. Previously, it was shown that CD40-stimulated CLL cells were resistant to ABT-737.

View Article and Find Full Text PDF

Background: Drug-resistant pathogens are an increasing threat, particularly for hospitalised patients. In search of a new approach in pathogen targeting, we developed bifunctional proteins that combine broad spectrum pathogen recognition with efficient targeting to phagocytes. Pathogen recognition is provided by a recombinant fragment of surfactant protein D (rfSP-D) while targeting to phagocytic cells is accomplished by coupling rfSP-D to F(ab') fragments directed against Fcalpha receptor I (FcalphaRI) or Fcgamma receptor I (FcgammaRI).

View Article and Find Full Text PDF

Objective: Four different patterns of demyelination have been described in active demyelinating lesions of multiple sclerosis (MS) patients that were biopsied shortly after disease onset. These patterns were suggested to represent heterogeneity of the underlying pathogenesis. The aim of this study was to determine whether lesion heterogeneity also exists in an unselected collection of autopsy material from patients with established MS.

View Article and Find Full Text PDF

Antibodies directed against myelin components have been described in multiple sclerosis (MS). Accumulating evidence suggests that pathogenically relevant anti-myelin antibodies bind conformational and post-translationally modified epitopes. However, the current methods to detect anti-myelin antibodies often do not allow recognition of such epitopes.

View Article and Find Full Text PDF