Mol Cancer Ther
February 2024
Unlabelled: Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type that arises in the squamous epithelial cells lining the mucosal surfaces of the upper aerodigestive tract. Long-term survival of patients with advanced disease stage remains disappointing with current treatment options. We show that tissue factor is abundantly expressed on patient-derived HNSCC cell lines, xenograft tumor material, and tumor biopsies from patients with HNSCC.
View Article and Find Full Text PDFBackground: HexaBody®-CD38 (GEN3014) is a hexamerization-enhanced human IgG1 that binds CD38 with high affinity. The E430G mutation in its Fc domain facilitates the natural process of antibody hexamer formation upon binding to the cell surface, resulting in increased binding of C1q and potentiated complement-dependent cytotoxicity (CDC).
Methods: Co-crystallization studies were performed to identify the binding interface of HexaBody-CD38 and CD38.
Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.
View Article and Find Full Text PDFCD3 bispecific antibodies (bsAbs) show great promise as anticancer therapeutics. Here, we show in-depth mechanistic studies of a CD3 bsAb in solid cancer, using DuoBody-CD3x5T4. Cross-linking T cells with tumor cells expressing the oncofetal antigen 5T4 was required to induce cytotoxicity.
View Article and Find Full Text PDFBackground: Despite the preclinical promise of CD40 and 4-1BB as immuno-oncology targets, clinical efforts evaluating CD40 and 4-1BB agonists as monotherapy have found limited success. DuoBody-CD40×4-1BB (GEN1042/BNT312) is a novel investigational Fc-inert bispecific antibody for dual targeting and conditional stimulation of CD40 and 4-1BB to enhance priming and reactivation of tumor-specific immunity in patients with cancer.
Methods: Characterization of DuoBody-CD40×4-1BB in vitro was performed in a broad range of functional immune cell assays, including cell-based reporter assays, T-cell proliferation assays, mixed-lymphocyte reactions and tumor-infiltrating lymphocyte assays, as well as live-cell imaging.
Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis have changed the treatment paradigm for advanced solid tumors; however, many patients experience treatment resistance. In preclinical models 4-1BB co-stimulation synergizes with ICI by activating cytotoxic T- and NK-cell-mediated anti-tumor immunity. Here we characterize the mechanism of action of a mouse-reactive Fc-inert PD-L1×4-1BB bispecific antibody (mbsAb-PD-L1×4-1BB) and provide proof-of-concept for enhanced anti-tumor activity.
View Article and Find Full Text PDFUnlabelled: Checkpoint inhibitors (CPI) have revolutionized the treatment paradigm for advanced solid tumors; however, there remains an opportunity to improve response rates and outcomes. In preclinical models, 4-1BB costimulation synergizes with CPIs targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis by activating cytotoxic T-cell-mediated antitumor immunity. DuoBody-PD-L1×4-1BB (GEN1046) is an investigational, first-in-class bispecific immunotherapy agent designed to act on both pathways by combining simultaneous and complementary PD-L1 blockade and conditional 4-1BB stimulation in one molecule.
View Article and Find Full Text PDFApoptosis induction by death receptor (DR)-specific agonistic antibodies is a potentially effective antitumor therapy. Nonetheless, to date, all conventional DR-targeting antibodies that induce apoptosis via FcγR-dependent DR clustering failed to show clinical efficacy. HexaBody-DR5/DR5 (GEN1029) has been developed to overcome full FcγR dependence.
View Article and Find Full Text PDFBlood Cancer J
February 2021
Higher-order death receptor 5 (DR5) clustering can induce tumor cell death; however, therapeutic compounds targeting DR5 have achieved limited clinical efficacy. We describe HexaBody-DR5/DR5, an equimolar mixture of two DR5-specific IgG1 antibodies with an Fc-domain mutation that augments antibody hexamerization after cell surface target binding. The two antibodies do not compete for binding to DR5 as demonstrated using binding competition studies, and binding to distinct epitopes in the DR5 extracellular domain was confirmed by crystallography.
View Article and Find Full Text PDFTetraspanin CD37 has recently received renewed interest as a therapeutic target for B-cell malignancies. Although complement-dependent cytotoxicity (CDC) is a powerful Fc-mediated effector function for killing hematological cancer cells, CD37-specific antibodies are generally poor inducers of CDC. To enhance CDC, the E430G mutation was introduced into humanized CD37 monoclonal IgG1 antibodies to drive more efficient IgG hexamer formation through intermolecular Fc-Fc interactions after cell surface antigen binding.
View Article and Find Full Text PDFBackground: DuoBody®-CD3xCD20 (GEN3013) is a full-length human IgG1 bispecific antibody (bsAb) recognizing CD3 and CD20, generated by controlled Fab-arm exchange. Its Fc domain was silenced by introduction of mutations L234F L235E D265A.
Methods: T-cell activation and T-cell-mediated cytotoxicity were measured by flow cytometry following co-culture with tumour cells.
Targeted therapies and immunotherapy have shown promise in patients with non-small cell lung cancer (NSCLC). However, the majority of patients fail or become resistant to treatment, emphasizing the need for novel treatments. In this study, we confirm the prognostic value of levels of AXL, a member of the TAM receptor tyrosine kinase family, in NSCLC and demonstrate potent antitumor activity of the AXL-targeting antibody-drug conjugate enapotamab vedotin across different NSCLC subtypes in a mouse clinical trial of human NSCLC.
View Article and Find Full Text PDFCD20 monoclonal antibody therapies have significantly improved the outlook for patients with B-cell malignancies. However, many patients acquire resistance, demonstrating the need for new and improved drugs. We previously demonstrated that the natural process of antibody hexamer formation on targeted cells allows for optimal induction of complement-dependent cytotoxicity.
View Article and Find Full Text PDFIntratumor heterogeneity is a key factor contributing to therapeutic failure and, hence, cancer lethality. Heterogeneous tumors show partial therapy responses, allowing for the emergence of drug-resistant clones that often express high levels of the receptor tyrosine kinase AXL. In melanoma, AXL-high cells are resistant to MAPK pathway inhibitors, whereas AXL-low cells are sensitive to these inhibitors, rationalizing a differential therapeutic approach.
View Article and Find Full Text PDFHepatitis C virus (HCV) infection is a major global public health problem. Early induction of cross-reactive neutralizing antibodies during acute infection correlates with the spontaneous clearance of HCV. Understanding the antibody response in multiple subjects in large-scale studies would greatly benefit vaccine development.
View Article and Find Full Text PDFHuman IgG1 type I CD20 Abs, such as rituximab and ofatumumab (OFA), efficiently induce complement-dependent cytotoxicity (CDC) of CD20 B cells by binding of C1 to hexamerized Fc domains. Unexpectedly, we found that type I CD20 Ab F(ab') fragments, as well as C1q-binding-deficient IgG mutants, retained an ability to induce CDC, albeit with lower efficiency than for whole or unmodified IgG. Experiments using human serum depleted of specific complement components demonstrated that the observed lytic activity, which we termed "accessory CDC," remained to be dependent on C1 and the classical pathway.
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) are designed to be stable in circulation and to release potent cytotoxic drugs intracellularly following antigen-specific binding, uptake, and degradation in tumor cells. Efficient internalization and routing to lysosomes where proteolysis can take place is therefore essential. For many cell surface proteins and carbohydrate structures on tumor cells, however, the magnitude of these processes is insufficient to allow for an effective ADC approach.
View Article and Find Full Text PDFDaratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells.
View Article and Find Full Text PDFThe novel Bruton tyrosine kinase inhibitor ibrutinib and phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib are promising drugs for the treatment of chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma, either alone or in combination with anti-CD20 antibodies. We investigated the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct cell death of cell lines or chronic lymphocytic leukemia samples mediated by anti-CD20 antibodies.
View Article and Find Full Text PDFTissue factor (TF) is aberrantly expressed in solid cancers and is thought to contribute to disease progression through its procoagulant activity and its capacity to induce intracellular signaling in complex with factor VIIa (FVIIa). To explore the possibility of using tissue factor as a target for an antibody-drug conjugate (ADC), a panel of human tissue factor-specific antibodies (TF HuMab) was generated. Three tissue factor HuMab, that induced efficient inhibition of TF:FVIIa-dependent intracellular signaling, antibody-dependent cell-mediated cytotoxicity, and rapid target internalization, but had minimal impact on tissue factor procoagulant activity in vitro, were conjugated with the cytotoxic agents monomethyl auristatin E (MMAE) or monomethyl auristatin F (MMAF).
View Article and Find Full Text PDF