Conventional and regulatory T cells (Treg) are dynamic mediators of maternal immune tolerance to the developing feto-placental unit. Functional evaluation of T cells at the maternal-fetal interface is crucial to elucidate the immunologic basis of obstetric complications. Our objective was to define the T cell phenotype and function of uterine intervillous blood (IVB) in pregnancy with and without preeclampsia.
View Article and Find Full Text PDFThe SARS-CoV-2 Omicron variant has continued to evolve. XBB is a recombinant between two BA.2 sublineages, XBB.
View Article and Find Full Text PDFImportance: Antibody responses elicited by current messenger RNA (mRNA) COVID-19 vaccines decline rapidly and require repeated boosting.
Objective: To evaluate the immunogenicity and durability of heterologous and homologous prime-boost regimens involving the adenovirus vector vaccine Ad26.COV2.
There is a need to standardize pathologic endpoints in animal models of SARS-CoV-2 infection to help benchmark study quality, improve cross-institutional comparison of data, and assess therapeutic efficacy so that potential drugs and vaccines for SARS-CoV-2 can rapidly advance. The Syrian hamster model is a tractable small animal model for COVID-19 that models clinical disease in humans. Using the hamster model, the authors used traditional pathologic assessment with quantitative image analysis to assess disease outcomes in hamsters administered polyclonal immune sera from previously challenged rhesus macaques.
View Article and Find Full Text PDFEmerging SARS-CoV-2 variants with the potential to escape binding and neutralizing antibody responses pose a threat to vaccine efficacy. We recently reported expansion of broadly neutralizing activity of vaccine-elicited antibodies in humans 8 months following a single immunization with Ad26.COV2.
View Article and Find Full Text PDFAd26.COV2.S has demonstrated durability and clinical efficacy against symptomatic COVID-19 in humans.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have emerged and may pose a threat to both the efficacy of vaccines based on the original WA1/2020 strain and the natural immunity induced by infection with earlier SARS-CoV-2 variants. We investigated how mutations in the spike protein of circulating SARS-CoV-2 variants, which have been shown to partially evade neutralizing antibodies, affect natural and vaccine-induced immunity. We adapted a Syrian hamster model of moderate to severe clinical disease for two variant strains of SARS-CoV-2: B.
View Article and Find Full Text PDFThe emergence of SARS-CoV-2 variants that partially evade neutralizing antibodies poses a threat to the efficacy of current COVID-19 vaccines. The Ad26.COV2.
View Article and Find Full Text PDFPseudotyped viruses are valuable tools for studying virulent or lethal viral pathogens that need to be handled in biosafety level 3 (BSL-3) or higher facilities. With the explosive spread of the coronavirus disease 2019 (COVID-19) pandemic, the establishment of a BSL-2 adapted SARS-CoV-2 pseudovirus neutralization assay is needed to facilitate the development of countermeasures. Here we describe an approach to generate a single-round lentiviral vector-based SARS-CoV-2 pseudovirus, which produced a signal more than 2 logs above background.
View Article and Find Full Text PDFThe establishment of a long-lived viral reservoir is the key obstacle for achieving an HIV-1 cure. However, the anatomic, virologic, and immunologic features of the viral reservoir in tissues during antiretroviral therapy (ART) remain poorly understood. Here we present a comprehensive necroscopic analysis of the SIV/SHIV viral reservoir in multiple lymphoid and non-lymphoid tissues from SIV/SHIV-infected rhesus macaques suppressed with ART for one year.
View Article and Find Full Text PDFAn effective vaccine that can protect against HIV infection does not exist. A major reason why a vaccine is not available is the high mutability of the virus, which enables it to evolve mutations that can evade human immune responses. This challenge is exacerbated by the ability of the virus to evolve compensatory mutations that can partially restore the fitness cost of immune-evading mutations.
View Article and Find Full Text PDFRecent studies have reported the protective efficacy of both natural and vaccine-induced immunity against challenge with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in rhesus macaques. However, the importance of humoral and cellular immunity for protection against infection with SARS-CoV-2 remains to be determined. Here we show that the adoptive transfer of purified IgG from convalescent rhesus macaques (Macaca mulatta) protects naive recipient macaques against challenge with SARS-CoV-2 in a dose-dependent fashion.
View Article and Find Full Text PDFViral rebound following antiretroviral therapy (ART) discontinuation in HIV-1-infected individuals is believed to originate from a small pool of CD4+ T cells harboring replication-competent provirus. However, the origin and nature of the rebound virus has remained unclear. Recent studies have suggested that rebound virus does not originate directly from individual latent proviruses but rather from recombination events involving multiple proviruses.
View Article and Find Full Text PDFSeveral HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters and nonhuman primates have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals.
View Article and Find Full Text PDFA safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates.
View Article and Find Full Text PDFAn understanding of protective immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for vaccine and public health strategies aimed at ending the global coronavirus disease 2019 (COVID-19) pandemic. A key unanswered question is whether infection with SARS-CoV-2 results in protective immunity against reexposure. We developed a rhesus macaque model of SARS-CoV-2 infection and observed that macaques had high viral loads in the upper and lower respiratory tract, humoral and cellular immune responses, and pathologic evidence of viral pneumonia.
View Article and Find Full Text PDFThe global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made the development of a vaccine a top biomedical priority. In this study, we developed a series of DNA vaccine candidates expressing different forms of the SARS-CoV-2 spike (S) protein and evaluated them in 35 rhesus macaques. Vaccinated animals developed humoral and cellular immune responses, including neutralizing antibody titers at levels comparable to those found in convalescent humans and macaques infected with SARS-CoV-2.
View Article and Find Full Text PDFSimian-human immunodeficiency virus (SHIV) infection of rhesus monkeys is an important preclinical model for human immunodeficiency virus type 1 (HIV-1) vaccines, therapeutics, and cure strategies. SHIVs have been optimized by incorporating HIV-1 Env residue 375 mutations that mimic the bulky or hydrophobic residues typically found in simian immunodeficiency virus (SIV) Env to improve rhesus CD4 binding. We applied this strategy to three SHIV challenge stocks (SHIV-SF162p3, SHIV-AE16, and SHIV-325c) and observed three distinct outcomes.
View Article and Find Full Text PDFBackground: Current efficacy studies of a mosaic HIV-1 prophylactic vaccine require four vaccination visits over one year, which is a complex regimen that could prove challenging for vaccine delivery at the community level, both for recipients and clinics. In this study, we evaluated the safety, tolerability, and immunogenicity of shorter, simpler regimens of trivalent Ad26.Mos.
View Article and Find Full Text PDFSustained virologic control of human immunodeficiency virus type 1 (HIV-1) infection after discontinuation of antiretroviral therapy (ART) is a major goal of the HIV-1 cure field. A recent study reported that administration of an antibody against αβ induced durable virologic control after ART discontinuation in 100% of rhesus macaques infected with an attenuated strain of simian immunodeficiency virus (SIV) containing a stop codon in We performed similar studies in 50 rhesus macaques infected with wild-type, pathogenic SIVmac251. In animals that initiated ART during either acute or chronic infection, anti-αβ antibody infusion had no detectable effect on the viral reservoir or viral rebound after ART discontinuation.
View Article and Find Full Text PDF