We explored the relative changes in ocular, corneal, and internal aberrations associated with normal aging with special emphasis in the role of ocular alignment and lens shape factor in the balance of aberrations. Ocular and corneal aberrations together with the angle kappa were measured for a 5-mm pupil diameter in 46 eyes with low refractive errors and ages ranging between 20 and 77 years. The root mean square (RMS) of the higher order ocular and corneal aberrations increased with age at a rate of 0.
View Article and Find Full Text PDFImaging polarimetry provides spatially resolved information on the polarization properties of a system. In the case of the living human eye, polarization could be related to the corneal biomechanical properties, which vary from the normal state as a result of surgery or pathologies. We have used an aberro-polariscope, which we recently developed, to determine and to compare the spatially resolved maps of polarization parameters across the pupil between normal healthy and post-LASIK eyes.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
July 2004
A new method of determining objectively the amount of scattered light in an optical system has been developed. It is based on measuring the degree of polarization of the light in images formed after a double pass through the system. A dual apparatus composed of a modified double-pass imaging polarimeter and a wave-front sensor was used to measure polarization properties and aberrations of the system under test.
View Article and Find Full Text PDFWe have developed an aberro-polariscope that simultaneously measures spatially resolved polarization properties and wave-front aberration in a living human eye. The setup consists of an infrared Hartmann-Shack sensor that incorporates a polariscope. A series of four Hartmann-Shack images corresponding to independent polarization states were recorded.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
January 2002
We studied the age dependence of the relative contributions of the aberrations of the cornea and the internal ocular surfaces to the total aberrations of the eye. We measured the wave-front aberration of the eye with a Hartmann-Shack sensor and the aberrations of the anterior corneal surface from the elevation data provided by a corneal topography system. The aberrations of the internal surfaces were obtained by direct subtraction of the ocular and corneal wave-front data.
View Article and Find Full Text PDF