Attached or floating macroscopic cyanobacteria can be found in shallow waters and can be easily hand-collected, but their identification is often challenging due to their high morphological variability. In addition, many members of environmental samples lose their morphological adaptations under controlled conditions, making the integration of analyses of field populations and derived isolated cultures necessary in order to evaluate phenotypic plasticity for identification purposes. Therefore, in this study, twenty-nine macroscopic field samples were analyzed by Illumina sequencing and parallel optical microscopy.
View Article and Find Full Text PDFTwo populations of Rivularia-like cyanobacteria were isolated from ecologically distinct and biogeographically distant sites. One population was from an unpolluted stream in the Kola Peninsula of Russia, whereas the other was from a wet wall in the Grand Staircase-Escalante National Monument, a desert park-land in Utah. Though both were virtually indistinguishable from Rivularia in field and cultured material, they were both phylogenetically distant from Rivularia and the Rivulariaceae based on both 16S rRNA and rbcLX phylogenies.
View Article and Find Full Text PDFHistorically, the genus Calothrix included all noncolonial, tapered, heterocytous filaments within the cyanobacteria. However, recent molecular phylogenies show that "Calothrix" defined in this sense represents five distinct clades. The type species of Calothrix is marine, with solitary basal heterocytes, no akinetes, and distal ends tapering abruptly into short hairs.
View Article and Find Full Text PDFThe family Microchaetaceae is a large group of heterocytous cyanobacteria, whose members bear typical morphological features of uniseriate heteropolar filaments never terminated by thin hairs and with simple false branching. However, phylogenetic analyses of the gene for 16S rRNA showed that members of this traditionally morphologically delimited family form several distant groups and therefore the current concept is hereafter indefensible. In this study, we provide reassessment of the status of the family Microchaetaceae based on morphology, ecology, biogeography, and phylogeny of 16S rRNA gene.
View Article and Find Full Text PDF