Aurora A kinase, a cell division regulator, is frequently overexpressed in various cancers, provoking genome instability and resistance to antimitotic chemotherapy. Localization and enzymatic activity of Aurora A are regulated by its interaction with the spindle assembly factor TPX2. We have used fragment-based, structure-guided lead discovery to develop small molecule inhibitors of the Aurora A-TPX2 protein-protein interaction (PPI).
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2023
Small-molecule capsid assembly modulators (CAMs) have been recently recognized as promising antiviral agents for curing chronic hepatitis B virus (HBV) infection. A target-based in silico screening study is described, aimed towards the discovery of novel HBV CAMs. Initial optimization of four weakly active screening hits was performed via focused library synthesis.
View Article and Find Full Text PDFTo date, hepatitis B virus (HBV) capsid assembly modulators (CAMs), which target the viral core protein and induce the formation of non-functional viral capsids, have been identified and characterized in microtiter plate-based biochemical or cell-based assays. In this work, we developed an automated microfluidic screening assay, which uses convection-dominated Taylor-Aris dispersion to generate high-resolution dose-response curves, enabling the measurements of compound EC values at very short incubation times. The measurement of early kinetics down to 7.
View Article and Find Full Text PDFThe synthesis of a previously undescribed sp-rich 6-5-5-6 tetracyclic ring scaffold using a palladium catalysed domino Heck-Suzuki reaction is reported. This reaction is high-yielding, selective for the domino process over the direct Suzuki reaction and tolerant towards a variety of boronic acids. The novel scaffold can also be accessed domino Heck-Stille and radical cyclisations.
View Article and Find Full Text PDFThe synthesis of diverse three-dimensional libraries has become of paramount importance for obtaining better leads for drug discovery. Such libraries are predicted to fare better than traditional compound collections in phenotypic screens and against difficult targets. Herein we report the diversity-oriented synthesis of a compound library using rhodium carbenoid chemistry to access structurally diverse three-dimensional molecules and show that they access biologically relevant areas of chemical space using cheminformatic analysis.
View Article and Find Full Text PDFThe application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup) with excellent optical purity and with an effective catalyst loading of ca. 2.
View Article and Find Full Text PDFα,α-Diphenylprolinol methyl- and trimethylsilyl ethers anchored onto a polystyrene resin have been prepared by a copper-catalyzed azide-alkyne cycloadditions (CuAAC). The catalytic activity and enantioselectivity displayed by the O-trimethylsilyl derivative are comparable to those exhibited by the best known homogeneous catalysts for the addition of aldehydes to nitroolefins and of malonates or nitromethane to α,β-unsaturated aldehydes. The combination of the catalytic unit, the triazole linker, and the polymeric matrix provides unprecedented substrate selectivity, in favor of linear, short-chain aldehydes, when the organocatalyzed reaction proceeds by an enamine mechanism.
View Article and Find Full Text PDFThe fast and highly stereoselective Mannich reaction of aldehydes and ketones with the N-(p-methoxyphenyl) ethyl glyoxylate imine catalyzed by polystyrene resins functionalized with (2S,4R)-hydroxyproline is reported. The effect of the nature of the linker connecting proline with the polymeric backbone has been studied, and a 1,2,3-triazole linker constructed from azidomethyl polystyrene and O-propargyl hydroxyproline turns out to be optimal for catalytic activity and enantioselectivity. With aldehyde donors, fast reactions leading to complete conversion in 1-3 h are recorded in DMF.
View Article and Find Full Text PDFThe development of a highly efficient, polymer-supported organocatalyst for the Michael addition of ketones to nitroolefins is described. A 1,2,3-triazole ring, constructed through a click 1,3-cycloaddition, plays the double role of grafting the chiral pyrrolidine monomer onto the polystyrene backbone and of providing a structural element, complementary to pyrrolidine, key to high catalytic activity and enantioselectivity. Optimal operation in water and full recyclability make the triazole linker attractive for the immobilization of organocatalysts.
View Article and Find Full Text PDF