Publications by authors named "Esther Akinlabi"

Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives.

View Article and Find Full Text PDF

Integrating innovation and environmental responsibility has become important in pursuing sustainable industrial practices in the contemporary world. These twin imperatives have stimulated research into developing methods that optimize industrial processes, enhancing efficiency and effectiveness while mitigating undesirable ecological impacts. This objective is exemplified by the emergence of biochar derived from the thermo-chemical transformation of biomass.

View Article and Find Full Text PDF

In a bid to improve entrepreneurial outcomes of graduates from Nigerian universities, the Nigerian government has launched a range of interventions, including a 2004 national policy mandating compulsory inclusion of entrepreneurship education in the curriculum, and support for the establishment and implementation of entrepreneurship development activities by university departments. However, not much is known about the operational nuances, challenges and impact cases that characterise the implementation of this national policy in such a vast, culturally diverse country as Nigeria. To address this lacuna, this study draws on qualitative data from five focus groups, crystalised with quantitative data from 151 students across four Nigerian Universities, to explicate the current trends, successes, and challenges of entrepreneurship development and innovation support in Nigerian universities.

View Article and Find Full Text PDF

Titanium alloy is widely used in many industries due to its unique weight to strength ratio and high corrosion resistance. A suitable method of joining Titanium and its alloys is using Tungsten Inert Gas (TIG) welding. A significant advantage of TIG welding over other fusion welding is its ability to use non-consumable electrodes.

View Article and Find Full Text PDF

The global demand for sustainable energy is increasing due to urbanization, industrialization, population, and developmental growth. Transforming the large quantities of biomass resources such as agro-residues/wastes could raise the energy supply and promote energy mix. Residues of biomass instituted in the rural and industrial centers are enormous, and poor management of these residues results in several indescribable environmental threats.

View Article and Find Full Text PDF

Friction stir spot welding (FSSW) was established to compete reasonably with the reverting, bolting, adhesive bonding as well as resistance spot welding (RSW) which have been used in the past for lap joining in automobile, aerospace, marine, railways, defence and shipbuilding industries. The use of these ancient and conventional joining techniques had led to increasing material cost, installation labour, and additional weight in the aircraft, shipbuilding, and other areas of applications. All these are disadvantages that can be overcome using FSSW.

View Article and Find Full Text PDF

This article presents the data of the bulk density, compressive strength and flexural strength of lateritic paving tiles compounded with pulverized cow bones (PCB) as reinforcement, the data set are presented in three categories. Category A involves the mixture of laterite and PCB, category B involves the mixture of sharp sand and PCB, lastly, category C involves the mixture of laterite, sharp sand and PCB. The paving tiles were made using the casting method in a 200 × 100 × 60 mm mould, using 20, 15, 10% wt.

View Article and Find Full Text PDF

Polylactide (PLA), a biopolymer, was reinforced with three fillers (two organic reinforcements and one inorganic filler). The processing technique used to fabricate the composites was the melt-blending technique. The composites and the unreinforced PLA were subjected to microhardness, compression and biodegradation characterisations.

View Article and Find Full Text PDF

The mechanism of graphite formation on gray cast iron metal during carburisation process using organic nano-carbon (ONC) was investigated at 900 °C for a holding time of three (3) hours. TEM and XRD were employed to characterize the pulverised nano-carbon to determine their phases and bonding potentials. Also, SEM/EDS, XRD and Vickers' hardness tester were employed to determine the microstructure, phase compositions as well as hardness and wear properties of the carburised material.

View Article and Find Full Text PDF

The datasets in this article are supplementary to the corresponding research article [1, 2]. The planar morphology and topography of TiC thin films coated on commercially pure Titanium (CpTi) grown by RF magnetron sputtering were investigated using Field emission scanning electron microscope (FESEM) and Atomic force microscope (AFM). The mechanical properties such as Hardness and Young Modulus of the thin film coating was studied using Nanohardness.

View Article and Find Full Text PDF

In this dataset, the influence of admixture of sawdust and iron filings on the kaolinite clay was experimented. This was done by blending various samples of kaolinite clay with varying percentages of sawdust and iron filings. Thermal analysis of the clay samples was carried out at different ratios of sawdust and iron filings blended with the clay samples.

View Article and Find Full Text PDF

This paper investigates anticorrosion behaviour of the bark-extract from L. on steel-rebar in concrete slabs in 3.5% NaCl medium of immersion (for simulating saline/marine environment).

View Article and Find Full Text PDF

Friction Stir Processing (FSP) is a surface modification technique used to enhance the mechanical properties and improve the surface integrity of the processed material. In the present data collection, aluminium alloy 7075-T651 was studied under different reinforcement conditions. Microchannel of dimension 3.

View Article and Find Full Text PDF

Non-renewable energy sources have detrimental environmental effects, which directly and indirectly affect the biosphere as environmental deposits from their use for energy generation exceed a threshold. This study performs a streamlined life cycle assessment (LCA) of a coal-fired plant in South Africa. The cradle-to-grave LCA focuses on the coal cycle to determine hotspots with high environmental impacts in the process.

View Article and Find Full Text PDF

Coconut Shell (CS) as agricultural lignocellulosic biomaterial and agro-waste is predominantly available in India, Malaysia, Nigeria, Thailand, Sri Lanka, and Indonesia. It has proven to have effective durability characteristic, good abstractive resistance, high toughness, and good adsorption properties, and is most suitable for long standing use in many applications such as reinforcement, source of energy, fillers as well as activated carbon and its performance, efficiency and effectiveness depend wholly on whether is in form of nano-, micro-, and macro- particles. In this data, effects of milling time on morphological characteristics was experimented using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and X-Ray Fluorescence (XRF) analyses.

View Article and Find Full Text PDF

Hydroxyapatite (HAP) coatings on bioinert metals such as Ti-6Al-4V are necessary for biomedical applications. Together, HAP and Ti-6Al-4V are biocompatible and bioactive. The challenges of depositing HAP on Ti-6Al-4V with traditional thermal spraying techniques are well founded.

View Article and Find Full Text PDF