MEMS and micromotors may benefit from the increasing complexity of rotors by integrating a larger number of magnetic dipoles. In this article, a new microassembly and bonding process to integrate multiple SmCo micromagnets in a ferromagnetic core is presented. We experimentally demonstrate the feasibility of a multipolar micrometric magnetic rotor with 11 magnetic dipoles made of N35 SmCo micromagnets (length below 250 μm and thickness of 65 μm), integrated on a ferromagnetic core.
View Article and Find Full Text PDFAdvances in cylindrical nanowires for 3D information technologies profit from intrinsic curvature that introduces significant differences with regards to planar systems. A model is proposed to control the stochastic and deterministic coding of remanent 3D complex vortex configurations in designed multilayered (magnetic/non-magnetic) cylindrical nanowires. This concept, introduced by micromagnetic simulations, is experimentally confirmed by magnetic imaging in FeCo/Cu multilayered nanowires.
View Article and Find Full Text PDFIsothermal tuning of both the magnitude and the sign of the bias field has been achieved by exploiting a new phenomenon in a system consisting of two orthogonally coupled films: SmCo5 (out-of-plane anisotropy)-CoFeB (in-plane anisotropy). This has been achieved by using the large dipolar magnetic field of the SmCo5 layer resulting in the pinning of one of the branches of the hysteresis loop (either the ascending or the descending branch) at a fixed field value while the second one is modulated along the field axis by varying the orientation of an externally applied magnetic field. This means the possibility of controlling the sign of the bias field in a manner not reported to date.
View Article and Find Full Text PDF"Domain wall traps" have been engineered and well-exploited in nanostrips by creating a geometrical trapping site, e.g. a single notch along a stripe, compared to diameter-modulated (DM) cylindrical magnetic nanowires (NWs) where multi-segmented DM-NWs have been generally studied.
View Article and Find Full Text PDFSearching for high-performance permanent magnets components with no limitation in shape and dimensions is highly desired to overcome the present design and manufacturing restrictions, which affect the efficiency of the final devices in energy, automotive and aerospace sectors. Advanced 3D-printing of composite materials and related technologies is an incipient route to achieve functional structures avoiding the limitations of traditional manufacturing. Gas-atomized MnAlC particles combined with polymer have been used in this work for fabricating scalable rare earth-free permanent magnet composites and extruded flexible filaments with continuous length exceeding 10 m.
View Article and Find Full Text PDFThe unidirectional motion of information carriers such as domain walls in magnetic nanostrips is a key feature for many future spintronic applications based on shift registers. This magnetic ratchet effect has so far been achieved in a limited number of complex nanomagnetic structures, for example, by lithographically engineered pinning sites. Here we report on a simple remagnetization ratchet originated in the asymmetric potential from the designed increasing lengths of magnetostatically coupled ferromagnetic segments in FeCo/Cu cylindrical nanowires.
View Article and Find Full Text PDFSeries of high hexagonally ordered compositionally modulated nanowire arrays, with different Cu layer and FeCoCu segment thicknesses and a constant diameter of 35 nm, were fabricated by electroplating from a single electrolytic bath into anodic aluminum oxide membranes. The objective of the study was to determine the influence of ferromagnetic (FM) segment and non-ferromagnetic (NFM) layer thickness on the magnetic properties, particularly coercivity and magnetic interactions. First-order reversal curve (FORC) measurements and simulations were performed to quantify the effect of the inter-/intra-nanowire magnetostatic interactions on the coercivity and interaction field distributions.
View Article and Find Full Text PDFThe use of 3d transition metal-based magnetic nanowires (NWs) for permanent magnet applications requires large magnetocrystalline anisotropy energy (MAE), which in combination with the NWs' magnetic shape anisotropy yields magnetic hardening and an enhancement of the magnetic energy product. Here, we report on the significant increase in MAE by 125 kJ m(-3) in Fe30Co70 NWs with diameters of 20-150 nm embedded in anodic aluminum oxide templates by adding 5 at.% Cu and subsequent annealing at 900 K.
View Article and Find Full Text PDFThe effect of arrays of nanometer scale pores on the magnetic properties of thin films has been analyzed. Particularly, we investigated the influence of the out-of-plane magnetization component created by the nanopores on the in-plane magnetic behavior of patterned hard/soft magnetic thin films in antidot morphology. Its influence on the coupling in Co/Py bilayers of few tens of nanometer thick is compared for disordered and ordered antidots of 35-nm diameter.
View Article and Find Full Text PDFControl over the magnetization reversal process of nanowires is essential to current advances in modern spintronic media and magnetic data storage. Much effort has been devoted to permalloy nanostrips with rectangular cross section and vanishing crystalline anisotropy. Our aim was to unveil and control the reversal process in FeCoCu nanowires with significant anisotropy and circular cross section with tailored periodical modulations in diameter.
View Article and Find Full Text PDF3d transition metal-based magnetic nanowires (NWs) are currently considered as potential candidates for alternative rare-earth-free alloys as novel permanent magnets. Here, we report on the magnetic hardening of Fe30Co70 nanowires in anodic aluminium oxide templates with diameters of 20 nm and 40 nm (length 6 μm and 7.5 μm, respectively) by means of magnetic pinning at the tips of the NWs.
View Article and Find Full Text PDF