Publications by authors named "Ester Carballo-Jane"

MASH is a prevalent liver disease that can progress to fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and ultimately death, but there are no approved therapies. Leukotriene B4 (LTB4) is a potent pro-inflammatory chemoattractant that drives macrophage and neutrophil chemotaxis, and genetic loss or inhibition of its high affinity receptor, leukotriene B4 receptor 1 (BLT1), results in improved insulin sensitivity and decreased hepatic steatosis. To validate the therapeutic efficacy of BLT1 inhibition in an inflammatory and pro-fibrotic mouse model of MASH and fibrosis, mice were challenged with a choline-deficient, L-amino acid defined high fat diet and treated with a BLT1 antagonist at 30 or 90 mg/kg for 8 weeks.

View Article and Find Full Text PDF

We have identified a series of novel insulin receptor partial agonists (IRPAs) with a potential to mitigate the risk of hypoglycemia associated with the use of insulin as an antidiabetic treatment. These molecules were designed as dimers of native insulin connected via chemical linkers of variable lengths with optional capping groups at the N-terminals of insulin chains. Depending on the structure, the maximal activation level (%Max) varied in the range of ∼20-70% of native insulin, and EC values remained in sub-nM range.

View Article and Find Full Text PDF

Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g.

View Article and Find Full Text PDF

3D imaging in animal models, during development or in adults, facilitates the identification of structural morphological changes that cannot be achieved with traditional 2D histological staining. Through the reconstruction of whole embryos or a region-of-interest, specific changes are better delimited and can be easily quantified. We focused here on high-resolution episcopic microscopy (HREM), and its potential for visualizing and quantifying the organ systems of normal and genetically altered embryos and adult organisms.

View Article and Find Full Text PDF

Lung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model.

View Article and Find Full Text PDF

Fibrosis, or the accumulation of extracellular matrix, is a common feature of many chronic diseases. To interrogate core molecular pathways underlying fibrosis, we cross-examine human primary cells from various tissues treated with TGF-β, as well as kidney and liver fibrosis models. Transcriptome analyses reveal that genes involved in fatty acid oxidation are significantly perturbed.

View Article and Find Full Text PDF

Due to their relatively large molecular sizes and delicate nature, biologic drugs such as peptides, proteins, and antibodies often require high and repeated dosing, which can cause undesired side effects and physical discomfort in patients and render many therapies inordinately expensive. To enhance the efficacy of biologic drugs, they could be encapsulated into polymeric hydrogel formulations to preserve their stability and help tune their release in the body to their most favorable profile of action for a given therapy. In this study, a series of injectable, thermoresponsive hydrogel formulations were evaluated as controlled delivery systems for various peptides and proteins, including insulin, Merck proprietary peptides (glucagon-like peptide analogue and modified insulin analogue), bovine serum albumin, and immunoglobulin G.

View Article and Find Full Text PDF

The regulation of nutrient homeostasis, i.e., the ability to transition between fasted and fed states, is fundamental in maintaining health.

View Article and Find Full Text PDF

Insulin has a narrow therapeutic index, reflected in a small margin between a dose that achieves good glycemic control and one that causes hypoglycemia. Once injected, the clearance of exogenous insulin is invariant regardless of blood glucose, aggravating the potential to cause hypoglycemia. We sought to create a "smart" insulin, one that can alter insulin clearance and hence insulin action in response to blood glucose, mitigating risk for hypoglycemia.

View Article and Find Full Text PDF

A tandem mass spectrometry method combined with an ion-pair chromatographic separation after weak cation exchange solid phase sample extraction for epinephrine (E), norepinephrine (NE) and dopamine (DA) has been developed. Two surrogate matrixes for plasma and urine as well as stable isotope labeled internal standards were utilized for quantitation. The observed dynamic range of E, NE and DA was 0.

View Article and Find Full Text PDF

Objective: Investigation was conducted to understand the mechanism of action of diacylglycerol acyltransferase 1 (DGAT1) using small molecules DGAT1 inhibitors, compounds K and L.

Design And Methods: Biochemical and stable-label tracer approaches were applied to interrogate the functional activities of compounds K and L on TG synthesis and changes of carbon flow. Energy homeostasis and gut peptide release upon DGAT1 inhibition was conducted in mouse and dog models.

View Article and Find Full Text PDF

The use of nicotinic acid to treat dyslipidemia is limited by induction of a "flushing" response, mediated in part by the interaction of prostaglandin D(2) (PGD(2)) with its G-protein coupled receptor, DP1 (Ptgdr). The impact of DP1 blockade (genetic or pharmacologic) was assessed in experimental murine models of atherosclerosis. In Ptgdr(-/-)ApoE(-/-) mice versus ApoE(-/-) mice, both fed a high-fat diet, aortic cholesterol content was modestly higher (1.

View Article and Find Full Text PDF

G-protein coupled receptor (GPCR) GPR109a is a molecular target for nicotinic acid and is expressed in adipocytes, spleen, and immune cells. Nicotinic acid has long been used for the treatment of dyslipidemia due to its capacity to positively affect serum lipids to a greater extent than other currently marketed drugs. We report a series of tricyclic pyrazole carboxylic acids that are potent and selective agonists of GPR109a.

View Article and Find Full Text PDF

High-density lipoprotein (HDL)-targeting therapies, including reconstituted HDL (rHDL), are attractive agents for treating dyslipidemia and atherosclerosis, as they may increase HDL levels and enhance therapeutic activities associated with HDL, including reverse cholesterol transport (RCT). Using CSL-111, a rHDL consisting of native human apolipoprotein AI (hApoAI) and phospholipids, we characterized the acute effects of rHDL administration in C57Bl/6 mice to (i) further our understanding of the mechanism of action of rHDL, and (ii) evaluate the usefulness of the mouse as a preclinical model for HDL-targeting therapies. After a single injection of CSL-111, there was a dose- and time-dependent increase of hApoAI, human pre-β HDL, total cholesterol, and triglycerides in serum, consistent with the effects of CSL-111 in humans.

View Article and Find Full Text PDF

In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures.

View Article and Find Full Text PDF

Reverse cholesterol transport promoted by HDL-apoA-I is an important mechanism of protection against atherosclerosis. We have previously identified apoA-I mimetic peptides by synthesizing analogs of the 22 amino acid apoA-I consensus sequence (apoA-I(cons)) containing non-natural aliphatic amino acids. Here we examined the effect of different aliphatic non-natural amino acids on the structure-activity relationship (SAR) of apoA-I mimetic peptides.

View Article and Find Full Text PDF

The purinergic receptor P2Y(13) has been shown to play a role in the uptake of holo-HDL particles in in vitro hepatocyte experiments. In order to determine the role of P2Y(13) in lipoprotein metabolism in vivo, we ablated the expression of this gene in mice. Here we show that P2Y(13) knockout mice have lower fecal concentrations of neutral sterols (-27%±2.

View Article and Find Full Text PDF

5-Alkyl and aryl-pyrazole-acids have been identified as a new class of selective, small-molecule, agonists of the human orphan G-protein-coupled receptor GPR109a, a high affinity receptor for the HDL-raising drug nicotinic acid.

View Article and Find Full Text PDF

Niacin is an effective drug for raising HDL cholesterol. However, niacin must be taken in large doses and significant side effects are often observed, including facial flushing, loss of glucose tolerance, and liver toxicity. An anthranilic acid was identified as an agonist of the niacin receptor.

View Article and Find Full Text PDF

Tricyclic pyrazole tetrazoles which are potent partial agonists of the high affinity niacin receptor, GPR109a, have been discovered and optimized. One of these compounds has proven to be effective at lowering free fatty acids in vitro and in vivo.

View Article and Find Full Text PDF

Biaryl cyclohexene carboxylic acids were discovered as full and potent niacin receptor (GPR109A) agonists. Compound 1e (MK-6892) displayed excellent receptor activity, good PK across species, remarkably clean off-target profiles, good ancillary pharmacology, and superior therapeutic window over niacin regarding the FFA reduction versus vasodilation in rats and dogs.

View Article and Find Full Text PDF

Niacin is an effective drug for raising HDL cholesterol and reducing coronary risks, but patients show low compliance with treatment due to severe facial flushing upon taking the drug. A series of bicyclic pyrazole carboxylic acids were synthesized and tested for their ability to activate the niacin receptor. One analog, 23, showed improved potency and lacked flushing at doses that effectively altered the lipid profile of rats.

View Article and Find Full Text PDF

Novel 1-(2-aminopyrazin-3-yl)methyl-2-thioureas are described as inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2). These compounds demonstrate potent in vitro activity against the enzyme with IC(50) values as low as 15 nM, and suppress expression of TNFalpha in THP-1 cells and in vivo in an acute inflammation model in mice. The synthesis, structure-activity relationship (SAR), and biological evaluation of these compounds are discussed.

View Article and Find Full Text PDF