Publications by authors named "Ester Canto"

BK polyomavirus infection is an important cause of graft loss in transplant patients, however, currently available therapies lack effectiveness against this pathogen. Identification of immunological targets for potential treatments is therefore necessary. The aim of this study was to predict candidates of immunodominant epitopes within four BK virus proteins (VP1, VP2, VP3 and LTA) using PBMCs from 44 healthy donors.

View Article and Find Full Text PDF

Neurodegeneration mediates neurological disability in inflammatory demyelinating diseases of the CNS. The role of innate immune cells in mediating this damage has remained controversial with evidence for destructive and protective effects. This has complicated efforts to develop treatment.

View Article and Find Full Text PDF

Immunosuppressed patients are susceptible to virus reactivation or infection. Adoptive immunotherapy, based on virus-specific T lymphocytes (VST), can prevent or treat viral diseases. However, donor availability, HLA-compatibility restrictions, high costs, and time required for the production of personalized medicines constitute considerable limitations to this treatment.

View Article and Find Full Text PDF

Importance: Blood sample-based biomarkers that are associated with clinically meaningful outcomes for patients with multiple sclerosis (MS) have not been developed.

Objective: To evaluate the potential of serum neurofilament light chain (sNFL) measurements as a biomarker of disease activity and progression in a longitudinal MS data set.

Design, Setting, And Participants: Single-center, ongoing, prospective observational cohort study of 607 patients with MS from the longitudinal EPIC (Expression, Proteomics, Imaging, Clinical) study at the University of California, San Francisco from July 1, 2004, through August 31, 2017.

View Article and Find Full Text PDF

The molecular events underlying the transition from initial inflammatory flares to the progressive phase of multiple sclerosis (MS) remain poorly understood. Here, we report that the microtubule-associated protein (MAP) Tau exerts a gender-specific protective function on disease progression in the MS model experimental autoimmune encephalomyelitis (EAE). A detailed investigation of the autoimmune response in Tau-deficient mice excluded a strong immunoregulatory role for Tau, suggesting that its beneficial effects are presumably exerted within the central nervous system (CNS).

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is characterized by increased activation of peripheral blood mononuclear cells (PBMCs), linked to perturbations in the phosphorylation of signaling proteins.

Methods: We developed a phosphoflow cytometry protocol to assess the levels of 11 phosphorylated nuclear proteins at baseline conditions and after cell activation in distinct PBMC populations from 41 treatment-naïve relapsing-remitting (RR) MS subjects and 37 healthy controls, and in a second cohort of 9 untreated RRMS patients and 10 secondary progressive (SP) MS patients. Levels of HLA-ABC, HLA-E, and HLA-DR were also assessed.

View Article and Find Full Text PDF

A broad scientific consensus has emerged linking multiple sclerosis (MS) risk to multiple independent and interacting DNA variants that are relatively frequent in the population and act in concert with environmental exposures. The multifactorial, polygenic model of heritability provided the rationale and impetus to pursue genome-wide association studies (GWAS), which have been highly successful in uncovering genetic variants influencing susceptibility. Over 200 loci have been firmly associated with MS susceptibility.

View Article and Find Full Text PDF

Little is known about the mechanisms leading to neurodegeneration in multiple sclerosis (MS) and the role of peripheral blood cells in this neurodegenerative component. We aimed to correlate brain radiological phenotypes defined by high and low neurodegeneration with gene expression profiling of peripheral blood mononuclear cells (PBMC) from MS patients. Magnetic resonance imaging (MRI) scans from 64 patients with relapsing-remitting MS (RRMS) were classified into radiological phenotypes characterized by low (N = 27) and high (N = 37) neurodegeneration according to the number of contrast-enhancing lesions, the relative volume of non-enhancing black holes on T1-weighted images, and the brain parenchymal fraction.

View Article and Find Full Text PDF

Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome, but not all patients with this syndrome develop multiple sclerosis over time, and currently, there is no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop clinically defined multiple sclerosis. Here, we took advantage of the capabilities of targeted mass spectrometry to establish a diagnostic molecular classifier with high sensitivity and specificity able to differentiate between clinically isolated syndrome patients with a high and a low risk of developing multiple sclerosis.

View Article and Find Full Text PDF

CD8+CD161hi cells, comprising MAIT and non-MAIT cells, have been involved in multiple sclerosis (MS) pathogenesis. Here, we investigated the frequency of CD8+CD161hi, MAIT and non-MAIT cells by flow cytometry in peripheral blood samples from 41 untreated MS patients, 48 patients receiving disease modifying therapies, and 17 healthy controls (HC). IFNβ treatment was associated with a decrease in the frequency of Tc17 cells compared to untreated patients (p=0.

View Article and Find Full Text PDF

Background: Natalizumab treatment is associated with progressive multifocal leukoencephalopathy (PML) development. Treatment duration, prior immunosuppressant use, and JCV serostatus are currently used for risk stratification, but PML incidence stays high. Anti-JCV antibody index and L-selectin (CD62L) have been proposed as additional risk stratification parameters.

View Article and Find Full Text PDF

Increasing evidence points to a role for chitinase 3-like 1 (CHI3L1) in multiple sclerosis (MS). Here, we aimed to explore the potential involvement of CHI3L1 in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). EAE was induced by immunization with MOG 35-55 peptide in wild-type (WT) and knock-out (KO) mice for breast regression protein 39 (BRP-39), the mouse homologue of human CHI3L1.

View Article and Find Full Text PDF

Chitinase 3-like 1 (CHI3L1) has been proposed as a biomarker associated with the conversion to clinically definite multiple sclerosis in patients with clinically isolated syndromes, based on the finding of increased cerebrospinal fluid CHI3L1 levels in clinically isolated syndrome patients who later converted to multiple sclerosis compared to those who remained as clinically isolated syndrome. Here, we aimed to validate CHI3L1 as a prognostic biomarker in a large cohort of patients with clinically isolated syndrome. This is a longitudinal cohort study of clinically isolated syndrome patients with clinical, magnetic resonance imaging, and cerebrospinal fluid data prospectively acquired.

View Article and Find Full Text PDF

Background: In a previous proteomics study using pooled cerebrospinal fluid (CSF) samples, we proposed apolipoprotein AI, apolipoprotein AIV, vitronectin, plasminogen, semaphorin 7A, and ala-β-his-dipeptidase as candidate biomarkers associated with the conversion to clinically definite multiple sclerosis (CDMS) in patients with clinically isolated syndromes (CIS). Here, we aimed to validate these results in individual CSF samples using alternative techniques.

Methods: In a first replication study, levels of apolipoproteins AI and AIV, vitronectin, and plasminogen were measured by ELISA in CSF and serum of 56 CIS patients (29 patients who converted to CDMS (MS converters) and 27 patients who remained with CIS during follow-up (MS non-converters)) and 26 controls with other neurological disorders.

View Article and Find Full Text PDF

The levels of soluble tumor necrosis factor receptor II (sTNF-RII) were determined in serum of 161 untreated multiple sclerosis (MS) patients with different clinical forms and 46 healthy controls (HC) by ELISA. Our results show that serum sTNF-RII levels were significantly increased in patients with primary progressive MS (PPMS) compared with other MS forms and HC. Although sTNF-RII levels significantly increased over a 2-year follow-up period in a subgroup of PPMS patients, they could not discriminate between patients with and without disability progression.

View Article and Find Full Text PDF

Evidence exists that apoptotic elimination of autoreactive T lymphocytes is defective in multiple sclerosis (MS). Here, we measured serum levels of soluble forms of Fas (sFas), Fas ligand (sFasL) and TNF-related apoptosis-inducing ligand (sTRAIL) in 38 healthy controls (HC) and 92 untreated MS patients with different clinical forms and activity phases of the disease by immunoassay. Serum levels of sFas, sFasL and sTRAIL did not differ between MS patients and HC.

View Article and Find Full Text PDF

In most patients with multiple sclerosis, the disease initiates with a first attack or clinically isolated syndrome. At this phase, magnetic resonance imaging is an important predictor of conversion to multiple sclerosis. With the exception of oligoclonal bands, the role of other biomarkers in patients with clinically isolated syndrome is controversial.

View Article and Find Full Text PDF