Membrane fusion is essential for the basal functionality of eukaryotic cells. In physiological conditions, fusion events are regulated by a wide range of specialized proteins, operating with finely tuned local lipid composition and ionic environment. Fusogenic proteins, assisted by membrane cholesterol and calcium ions, provide the mechanical energy necessary to achieve vesicle fusion in neuromediator release.
View Article and Find Full Text PDFFunctional peptides are now widely used in a myriad of biomedical and clinical contexts, from cancer therapy and tumor targeting to the treatment of bacterial and viral infections. Underlying this diverse range of applications are the non-specific interactions that can occur between peptides and cell membranes, which, in many contexts, result in spontaneous internalization of the peptide within cells by avoiding energy-driven endocytosis. For this to occur, the amphipathicity and surface structural flexibility of the peptides play a crucial role and can be regulated by the presence of specific molecular residues that give rise to precise molecular events.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2022
The toxicity of α-synuclein (α-syn), the amyloidogenic protein responsible for Parkinson's disease, is likely related to its interaction with the asymmetric neuronal membrane. α-Syn exists as cytoplasmatic and as extracellular protein as well. To shed light on the different interactions occurring at the different α-syn localizations, we have here modelled the external and internal membrane leaflets of the neuronal membrane with two complex lipid mixtures, characterized by phase coexistence and with negative charge confined to either the ordered or the disordered phase, respectively.
View Article and Find Full Text PDFThe potential toxicity of ligand-protected nanoparticles (NPs) on biological targets is crucial for their clinical translation. A number of studies are aimed at investigating the molecular mechanisms shaping the interactions between synthetic NPs and neutral plasma membranes. The role played by the NP surface charge is still widely debated.
View Article and Find Full Text PDFAmphiphilic gold nanoparticles with diameters in the 2-4 nm range are promising as theranostic agents thanks to their spontaneous translocation through cell membranes. This study addresses the effects that these nanoparticles may have on a distinct feature of plasma membranes: lipid lateral phase separation. Atomic force microscopy, quartz crystal microbalance, and molecular dynamics are combined to study the interaction between model neuronal membranes, which spontaneously form ordered and disordered lipid domains, and amphiphilic gold nanoparticles having negatively charged surface functionalization.
View Article and Find Full Text PDFMonolayer-protected gold nanoparticles (Au NPs) are promising biomedical tools with applications in diagnosis and therapy, thanks to their biocompatibility and versatility. Here we show how the NP surface functionalization can drive the mechanism of interaction with lipid membranes. In particular, we show that the spontaneous protonation of anionic carboxylic groups on the NP surface can make the NP-membrane interaction faster and less disruptive.
View Article and Find Full Text PDF