Publications by authors named "Estelle Vasseur"

Investigations of the legacy of natural selection in the human genome have proved particularly informative, pinpointing functionally important regions that have participated in our genetic adaptation to the environment. Furthermore, genetic dissection of the intensity and type of selection acting on human genes can be used to predict involvement in different forms and severities of human diseases. We review here the progress made in population genetics studies toward understanding the effects of selection, in its different forms and intensities, on human genome diversity.

View Article and Find Full Text PDF

Host-pathogen interactions are generally initiated by host recognition of microbial components or danger signals triggered by microbial invasion. This recognition involves germline-encoded microbial sensors or pattern-recognition receptors (PRRs). By studying the way in which natural selection has driven the evolution of these microbial sensors in humans, we can identify genes playing an essential role and distinguish them from other, more redundant genes.

View Article and Find Full Text PDF

The RIG-I-like receptors (RLRs)--RIG-I, IFIH1 (or MDA5) and LGP2--are thought to be key actors in the innate immune system, as they play a major role in sensing RNA viruses in the cytosol of host cells. Despite the increasingly recognized importance of the RLR family in antiviral immunity, no population genetic studies have yet attempted to compare the evolutionary history of its different members in humans. Here, we characterized the levels of naturally occurring genetic variation in the RLRs in a panel of individuals of different ethnic origins, to assess to what extent natural selection has acted on this family of microbial sensors.

View Article and Find Full Text PDF

Natural selection is expected to act strongly on immune system genes as hosts adapt to novel, diverse, and coevolving pathogens. Population genetic studies of host defense genes with parallel functions in model organisms have revealed distinct evolutionary histories among the different components-receptors, adaptors, and effectors-of the innate immune system. In humans, however, detailed evolutionary studies have been mainly confined to the receptors and in particular to Toll-like receptors (TLRs).

View Article and Find Full Text PDF