Cytidine deaminase (CDA) converts cytidine and deoxycytidine into uridine and deoxyuridine as part of the pyrimidine salvage pathway. Elevated levels of CDA are found in pancreatic tumors and associated with chemoresistance. Recent evidence suggests that CDA has additional functions in cancer cell biology.
View Article and Find Full Text PDFA large body of literature highlights the importance of energy metabolism in the response of haematological malignancies to therapy. In this review, we are particularly interested in acute myeloid leukaemia, where mitochondrial metabolism plays a key role in response and resistance to treatment. We describe the new concept of mitohormesis in the response to therapy-induced stress and in the initiation of relapse in this disease.
View Article and Find Full Text PDFUnlabelled: Identifying mechanisms underlying relapse is a major clinical issue for effective cancer treatment. The emerging understanding of the importance of metastasis in hematologic malignancies suggests that it could also play a role in drug resistance and relapse in acute myeloid leukemia (AML). In a cohort of 1,273 AML patients, we uncovered that the multifunctional scavenger receptor CD36 was positively associated with extramedullary dissemination of leukemic blasts, increased risk of relapse after intensive chemotherapy, and reduced event-free and overall survival.
View Article and Find Full Text PDFUnlabelled: Dependency on mitochondrial oxidative phosphorylation (OxPhos) is a potential weakness for leukemic stem cells (LSC) that can be exploited for therapeutic purposes. Fatty acid oxidation (FAO) is a crucial OxPhos-fueling catabolic pathway for some acute myeloid leukemia (AML) cells, particularly chemotherapy-resistant AML cells. Here, we identified cold sensitivity at 4°C (cold killing challenge; CKC4), commonly used for sample storage, as a novel vulnerability that selectively kills AML LSCs with active FAO-supported OxPhos while sparing normal hematopoietic stem cells.
View Article and Find Full Text PDFThe PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear.
View Article and Find Full Text PDFMutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid β-oxidation of IDH1 mutant cells.
View Article and Find Full Text PDFDrug tolerant/resistant leukemic stem cell (LSC) subpopulations may explain frequent relapses in acute myeloid leukemia (AML), suggesting that these relapse-initiating cells (RICs) persistent after chemotherapy represent bona fide targets to prevent drug resistance and relapse. We uncover that calcitonin receptor-like receptor (CALCRL) is expressed in RICs, and that the overexpression of CALCRL and/or of its ligand adrenomedullin (ADM), and not CGRP, correlates to adverse outcome in AML. CALCRL knockdown impairs leukemic growth, decreases LSC frequency, and sensitizes to cytarabine in patient-derived xenograft models.
View Article and Find Full Text PDFDendrogenin A (DDA), a mammalian cholesterol metabolite with tumor suppressor properties, has recently been shown to exhibit strong anti-leukemic activity in acute myeloid leukemia (AML) cells by triggering lethal autophagy. Here, we demonstrated that DDA synergistically enhanced the toxicity of anthracyclines in AML cells but not in normal hematopoietic cells. Combination index of DDA treatment with either daunorubicin or idarubicin indicated a strong synergism in KG1a, KG1 and MV4-11 cell lines.
View Article and Find Full Text PDFRelapses driven by chemoresistant leukemic cell populations are the main cause of mortality for patients with acute myeloid leukemia (AML). Here, we show that the ectonucleotidase CD39 (ENTPD1) is upregulated in cytarabine-resistant leukemic cells from both AML cell lines and patient samples and . CD39 cell-surface expression and activity is increased in patients with AML upon chemotherapy compared with diagnosis, and enrichment in CD39-expressing blasts is a marker of adverse prognosis in the clinics.
View Article and Find Full Text PDFDendrogenin A (DDA) is a mammalian cholesterol metabolite that displays potent antitumor properties on acute myeloid leukemia (AML). DDA triggers lethal autophagy in cancer cells through a biased activation of the oxysterol receptor LXRβ, and the inhibition of a sterol isomerase. We hypothesize that DDA could potentiate the activity of an anticancer drug acting through a different molecular mechanism, and conducted in vitro and in vivo combination tests on AML cell lines and patient primary tumors.
View Article and Find Full Text PDFChemotherapies alter cellular redox balance and reactive oxygen species (ROS) content. Recent studies have reported that chemoresistant cells have an increased oxidative state in hematologic malignancies. In this study, we demonstrated that chemoresistant acute myeloid leukemia (AML) cells had a lower level of mitochondrial and cytosolic ROS in response to cytarabine (AraC) and overexpressed myeloperoxidase (MPO), a heme protein that converts hydrogen peroxide to hypochlorous acid (HOCl), compared with sensitive AML cells.
View Article and Find Full Text PDFAutophagy is associated with both survival and cell death in myeloid malignancies. Therefore, deciphering its role in different genetically defined subtypes of acute myeloid leukemia (AML) is critical. Activating mutations of the KIT receptor tyrosine kinase are frequently detected in core-binding factor AML and are associated with a greater risk of relapse.
View Article and Find Full Text PDF: In Acute Myeloid Leukemia (AML), a complete response to chemotherapy is usually obtained after conventional chemotherapy but overall patient survival is poor due to highly frequent relapses. As opposed to chronic myeloid leukemia, B lymphoma or multiple myeloma, AML is one of the rare malignant hemopathies the therapy of which has not significantly improved during the past 30 years despite intense research efforts. One promising approach is to determine metabolic dependencies in AML cells.
View Article and Find Full Text PDFObjectives: We previously reported the prognostic value of serum ferritin in younger patients with intermediate-risk acute myeloid leukemia (AML). The aims of this study were to confirm this finding in a larger cohort regardless of age and prognostic subgroups, to explore the expression and functional role of ferritin in AML cells as well as the regulation of serum ferritin levels in AML patients.
Patients/materials/methods: Serum ferritin levels at diagnosis were collected in a cohort of 525 patients treated by intensive chemotherapy.
Patients with acute myeloid leukemia and a high white blood cell count are at increased risk of early death and relapse. Because mediators of inflammation contribute to leukostasis and chemoresistance, dexamethasone added to chemotherapy could improve outcomes. This retrospective study evaluated the impact of adding or not adding dexamethasone to chemotherapy in a cohort of 160 patients with at least 50×10 white blood cells.
View Article and Find Full Text PDFDendrogenin A (DDA) is a newly discovered cholesterol metabolite with tumor suppressor properties. Here, we explored its efficacy and mechanism of cell death in melanoma and acute myeloid leukemia (AML). We found that DDA induced lethal autophagy in vitro and in vivo, including primary AML patient samples, independently of melanoma Braf status or AML molecular and cytogenetic classifications.
View Article and Find Full Text PDFChemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis , we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs.
View Article and Find Full Text PDFHere we demonstrate that in a niche-like coculture system, cells from both primary and cultured acute myeloid leukemia (AML) sources take up functional mitochondria from murine or human bone marrow stromal cells. Using different molecular and imaging approaches, we show that AML cells can increase their mitochondrial mass up to 14%. After coculture, recipient AML cells showed a 1.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness.
View Article and Find Full Text PDF