Publications by authors named "Estelle Lopez"

Goldenhar syndrome or oculo-auriculo-vertebral spectrum (OAVS) is a complex developmental disorder characterized by asymmetric ear anomalies, hemifacial microsomia, ocular and vertebral defects. We aimed at identifying and characterizing a new gene associated with OAVS. Two affected brothers with OAVS were analyzed by exome sequencing that revealed a missense variant (p.

View Article and Find Full Text PDF

Background: The Oculo-Auriculo-Vertebral Spectrum (OAVS) or Goldenhar Syndrome is an embryonic developmental disorder characterized by hemifacial microsomia associated with auricular, ocular and vertebral malformations. The clinical heterogeneity of this spectrum and its incomplete penetrance limited the molecular diagnosis. In this study, we describe a novel causative gene, ZYG11B.

View Article and Find Full Text PDF

Background: OFD1 syndrome is a rare ciliopathy inherited on a dominant X-linked mode, typically lethal in males in the first or second trimester of pregnancy. It is characterized by oral cavity and digital anomalies possibly associated with cerebral and renal signs. Its prevalence is between 1/250,000 and 1/50,000 births.

View Article and Find Full Text PDF

Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes.

View Article and Find Full Text PDF

Background: Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder involving first and second branchial arches derivatives, mainly characterised by asymmetric ear anomalies, hemifacial microsomia, ocular defects and vertebral malformations. Although numerous chromosomal abnormalities have been associated with OAVS, no causative gene has been identified so far.

Objectives: We aimed to identify the first causative gene for OAVS.

View Article and Find Full Text PDF

Cilia have a unique diffusion barrier ("gate") within their proximal region, termed transition zone (TZ), that compartmentalises signalling proteins within the organelle. The TZ is known to harbour two functional modules/complexes (Meckel syndrome [MKS] and Nephronophthisis [NPHP]) defined by genetic interaction, interdependent protein localisation (hierarchy), and proteomic studies. However, the composition and molecular organisation of these modules and their links to human ciliary disease are not completely understood.

View Article and Find Full Text PDF

Centrioles are microtubule-based, barrel-shaped structures that initiate the assembly of centrosomes and cilia. How centriole length is precisely set remains elusive. The microcephaly protein CPAP (also known as MCPH6) promotes procentriole growth, whereas the oral-facial-digital (OFD) syndrome protein OFD1 represses centriole elongation.

View Article and Find Full Text PDF

Cohen syndrome (CS) is a rare autosomal recessive disorder with multisytemic clinical features due to mutations in the VPS13B gene, which has recently been described encoding a mandatory membrane protein involved in Golgi integrity. As the Golgi complex is the place where glycosylation of newly synthesized proteins occurs, we hypothesized that VPS13B deficiency, responsible of Golgi apparatus disturbance, could lead to glycosylation defects and/or mysfunction of this organelle, and thus be a cause of the main clinical manifestations of CS. The glycosylation status of CS serum proteins showed a very unusual pattern of glycosylation characterized by a significant accumulation of agalactosylated fucosylated structures as well as asialylated fucosylated structures demonstrating a major defect of glycan maturation in CS.

View Article and Find Full Text PDF

Oral-facial-digital syndrome type VI (OFD VI) is a recessive ciliopathy defined by two diagnostic criteria: molar tooth sign (MTS) and one or more of the following: (1) tongue hamartoma (s) and/or additional frenula and/or upper lip notch; (2) mesoaxial polydactyly of one or more hands or feet; (3) hypothalamic hamartoma. Because of the MTS, OFD VI belongs to the "Joubert syndrome related disorders". Its genetic aetiology remains largely unknown although mutations in the TMEM216 gene, responsible for Joubert (JBS2) and Meckel-Gruber (MKS2) syndromes, have been reported in two OFD VI patients.

View Article and Find Full Text PDF

The promoter of the cystic fibrosis transmembrane conductance regulator gene CFTR is tightly controlled by regulators including CCAAT/enhancer binding proteins (C/EBPs). We previously reported that the transcription factors YY1 and USF2 affect CFTR expression. We can now demonstrate that C/EBPβ, a member of the CCAAT family, binds to the CFTR promoter and contributes to its transcriptional activity.

View Article and Find Full Text PDF

Oral-facial-digital syndrome type VI (OFD VI) is characterized by the association of malformations of the face, oral cavity and extremities, distinguished from the 12 other OFD syndromes by cerebellar and metacarpal abnormalities. Cerebellar malformations in OFD VI have been described as a molar tooth sign (MTS), thus, including OFD VI among the "Joubert syndrome related disorders" (JSRD). OFD VI diagnostic criteria have recently been suggested: MTS and one or more of the following: 1) tongue hamartoma(s) and/or additional frenula and/or upper lip notch; 2) mesoaxial polydactyly of hands or feet; 3) hypothalamic hamartoma.

View Article and Find Full Text PDF

Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism.

View Article and Find Full Text PDF

Background: DYRK1A plays different functions during development, with an important role in controlling brain growth through neuronal proliferation and neurogenesis. It is expressed in a gene dosage dependent manner since dyrk1a haploinsufficiency induces a reduced brain size in mice, and DYRK1A overexpression is the candidate gene for intellectual disability (ID) and microcephaly in Down syndrome. We have identified a 69 kb deletion including the 5' region of the DYRK1A gene in a patient with growth retardation, primary microcephaly, facial dysmorphism, seizures, ataxic gait, absent speech and ID.

View Article and Find Full Text PDF

Background: Non-progressive congenital ataxias (NPCA) with or without intellectual disability (ID) are clinically and genetically heterogeneous conditions. As a consequence, the identification of the genes responsible for these phenotypes remained limited.

Objective: Identification of a new gene responsible for NPCA and ID.

View Article and Find Full Text PDF

Hereditary factor VII (FVII) deficiency is a rare autosomal recessive disorder. Deleterious mutations that prevent the synthesis of any amount of functional FVII have been associated with life-threatening haemorrhage in neonates. Here we report two infants, of Maghrebian origin, who suffered a fatal spontaneous cerebral haemorrhage.

View Article and Find Full Text PDF

Floating-Harbor syndrome (FHS) is characterized by characteristic facial dysmorphism, short stature with delayed bone age, and expressive language delay. To date, the gene(s) responsible for FHS is (are) unknown and the diagnosis is only made on the basis of the clinical phenotype. The majority of cases appeared to be sporadic but rare cases following autosomal dominant inheritance have been reported.

View Article and Find Full Text PDF

Background: Congenital bilateral absence of the vas deferens (CBAVD), a frequent cause of obstructive azoospermia, is generated by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite extensive testing for point mutations and large rearrangements, a small proportion of alleles still remains unidentified in CBAVD patients.

Methods And Results: Mutation scanning analysis of microsatellite variability in the CFTR gene identified two undescribed 4 bp sequence repeats (TAAA)(6) and (TAAA)(8) in intron 9 in two CBAVD patients heterozygote for either the -33G→A promoter transition or the classical [TG12T5] CBAVD mutation.

View Article and Find Full Text PDF

A few studies have clearly indicated that oxidative stress suppresses the cystic fibrosis transmembrane conductance receptor (CFTR) function and expression. However, the mechanisms by which this occurs are still poorly understood. To clarify this effect, we investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor, a key cellular sensor of oxidative stress.

View Article and Find Full Text PDF