Composite laminates utilizing autoclave-grade carbon fiber-reinforced plastic (CFRP) prepreg were manufactured using a polymer nanoporous network (NPN) interlayer that generates capillary pressure in lieu of pressure from an autoclave. The polymer nanofiber NPN film is integrated into the interlaminar region and is shown to eliminate voids in a vacuum-bag-only (VBO) curing process. After a preliminary investigation of the effect of NPN thickness on the interlaminar region and performance, an 8 μm thick polymer NPN was selected for a scaled manufacturing demonstration.
View Article and Find Full Text PDFThe Mode I, Mode II, and mixed-mode interlaminar failure behavior of a thin-ply (54 gsm) carbon fiber-epoxy laminated composite reinforced by 20 μm tall -direction-aligned carbon nanotubes (CNTs), comprising ∼50 billion CNT fibers per cm, is analyzed following J-integral-based data reduction methods. The inclusion of aligned CNTs in the ply interfaces provides enhanced crack resistance, resulting in sustained crack deflection from the reinforced interlaminar region to the intralaminar region of the adjacent plies, i.e.
View Article and Find Full Text PDFSeparators in energy storage devices such as batteries and supercapacitors are critical elements between the much-researched anodes and cathodes. Here we present a new "structural separator" comprised of electrically-insulating aligned alumina nanotubes, which realizes a structural, or mechanically robust, function in addition to allowing charge transfer. The polymer nanocomposite structural separator is demonstrated in a supercapacitor cell and also as an interface reinforcement in an aerospace-grade structural carbon fiber composite.
View Article and Find Full Text PDFNanocarbon electronic conductors combined with pseudocapacitive materials, such as conducting polymers, display outstanding electrochemical properties and mechanical flexibility. These characteristics enable the fabrication of flexible electrodes for energy-storage devices; that is, supercapacitors that are wearable or can be formed into shapes that are easily integrated into vehicle parts. To date, most nanocarbon materials such as nanofibers are randomly dispersed as a network in a flexible matrix.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2019
Here, we optimized ultrathin films of granular NbN on SiO and of amorphous αWSi. We showed that hybrid superconducting nanowire single-photon detectors (SNSPDs) made of 2 nm thick αWSi films over 2 nm thick NbN films exhibit advantageous coexistence of timing (<5 ns reset time and 52 ps timing jitter) and efficiency (>96% quantum efficiency) performance. We discuss the governing mechanism of this hybridization via the proximity effect.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2013
Viscoelasticity is a complex yet important phenomenon that drives material response at different scales of time and space. Burgeoning interest in nanoscale dynamic material mechanics has driven, and been driven by two key techniques: instrumented nanoindentation and atomic force microscopy. This review provides an overview of fundamental principles in nanoindentation, and compares and contrasts these two techniques as they are used for characterization of viscoelastic processes at the nanoscale.
View Article and Find Full Text PDF