Anemia as associated with numerous clinical conditions can be debilitating, but frequently can be treated via administration of epoetin-alfa, darbepoietin-alfa, or methoxy-PEG epoetin-beta. Despite the complexity of EPO-EPO receptor interactions, the development of interesting EPO mimetic peptides (EMPs) also has been possible. CNTO 530 is one such novel MIMETIBODY Fc-domain dimeric EMP fusion protein.
View Article and Find Full Text PDFDuring anemia erythropoiesis is bolstered by several factors including KIT ligand, oncostatin-M, glucocorticoids, and erythropoietin. Less is understood concerning factors that limit this process. Experiments performed using dual-specificity tyrosine-regulated kinase-3 (DYRK3) knock-out and transgenic mice reveal that erythropoiesis is attenuated selectively during anemia.
View Article and Find Full Text PDFThe adult erythron is maintained via dynamic modulation of erythroblast survival potentials. Toward identifying novel regulators of this process, murine splenic erythroblasts at 3 developmental stages were prepared, purified and profiled. Stage-to-stage modulated genes were then functionally categorized, with a focus on apoptotic factors.
View Article and Find Full Text PDFEPO functions primarily as an erythroblast survival factor, and its antiapoptotic actions have been proposed to involve predominantly PI3-kinase and BCL-X pathways. Presently, the nature of EPO-regulated survival genes has been investigated through transcriptome analyses of highly responsive, primary bone marrow erythroblasts. Two proapoptotic factors, Bim and FoxO3a, were rapidly repressed not only via the wild-type EPOR, but also by PY-deficient knocked-in EPOR alleles.
View Article and Find Full Text PDFErythropoietin (EPO's) actions on erythroblasts are ascribed largely to survival effects. Certain studies, however, point to EPO-regulated proliferation. To investigate this problem in a primary system, Kit(pos)CD71(high) erythroblasts were prepared from murine bone marrow, and were first used in the array-based discovery of EPO-modulated cell-cycle regulators.
View Article and Find Full Text PDFEpo's erythropoietic capacity is ascribed largely to its antiapoptotic actions. In part via gene profiling of bone marrow erythroblasts, Epo is now shown to selectively down-modulate the adhesion/migration factors chemokine receptor-4 (Cxcr4) and integrin alpha-4 (Itga4) and to up-modulate growth differentiation factor-3 (Gdf3), oncostatin-M (OncoM), and podocalyxin like-1 (PODXL). For PODXL, Epo dose-dependent expression of this CD34-related sialomucin was discovered in Kit(+)CD71(high) proerythroblasts and was sustained at subsequent Kit(-)CD71(high) and Ter119(+) stages.
View Article and Find Full Text PDFBlood Cells Mol Dis
September 2007
Committed erythroid progenitor cells require exposure to erythropoietin (Epo) for their survival and for their quantitatively regulated transition to red blood cells. With regard to Epo signal transduction mechanisms, much has been learned from analyses in cell line models, fetal liver or spleen-derived primary erythroblasts and human CD34pos progenitor cells from cord blood or mobilized bone marrow. Presently, we have developed an ex vivo system that efficiently supports the expansion and development of murine adult bone-marrow-derived erythroid progenitor cells.
View Article and Find Full Text PDF