Beyond ecological and health impacts, invasive alien plant species can generate indirect and direct costs, notably through reduced agricultural yields, restoration, and management of the invaded environment. and are invasive plant species that cause particularly significant damage to the railway network in the Mediterranean area. The allelopathic properties of Mediterranean plant species could be used as nature-based solutions to slow down the spread of such invasive plant species along railway borders.
View Article and Find Full Text PDFUrban streams display consistent ecological symptoms that commonly express degraded biological, physical, and chemical conditions: the urban stream syndrome (USS). Changes linked to the USS result in consistent declines in the abundance and richness of algae, invertebrates, and riparian vegetation. In this paper, we assessed the impacts of extreme ionic pollution from an industrial effluent in an urban stream.
View Article and Find Full Text PDFGenetic Network Analyzer (GNA) is a tool for the qualitative modeling and simulation of gene regulatory networks, based on so-called piecewise-linear differential equation models. We describe the use of this tool in the context of the modeling of bacterial regulatory networks, notably the network of global regulators controlling the adaptation of Escherichia coli to carbon starvation conditions. We show how the modeler, by means of GNA, can define a regulatory network, build a model of the network, determine the steady states of the system, perform a qualitative simulation of the network dynamics, and analyze the simulation results using model-checking tools.
View Article and Find Full Text PDFThe current treatments used against RNA viruses have a limited efficacy and are often hampered by the induction of side-effects. The specific delivery of antiviral proteins in infected cells should increase their efficiency and reduce their impact on healthy cells. Here, we describe the development of a new approach which takes advantage of the viral replication machinery to specifically target the antiviral protein expression to the infected cells.
View Article and Find Full Text PDFBackground: The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces.
View Article and Find Full Text PDFComputer analysis of 158 hepatitis C virus (HCV) 5' untranslated region (5' UTR) sequences from the six genotypes showed that the 5' UTR from genotype 3 displays seven specific non-contiguous nucleotide changes, at positions 8, 13, 14, 70, 97, 203 and 224. The purpose of this study was to investigate the impact of these changes on translation and replication activities. Indeed, these modifications could alter both the internal ribosome entry site (IRES) present in the 5' UTR of the plus-strand RNA and the 3' end of the minus strand involved in the initiation of plus-strand RNA synthesis.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) 5' untranslated region (UTR) has been extensively studied with regard to its internal ribosomal entry site (IRES) activity. In this work we present results suggesting the existence of a strong promoter activity carried by the DNA sequence corresponding to the HCV 5' UTR. This activity was not detected when the HCV 5' UTR sequence was replaced by HCV 3' UTR or poliovirus 5' UTR sequences.
View Article and Find Full Text PDF