Publications by authors named "Estelle Doineau"

Poly(3-hydroxybutyrate--3-hydroxyvalerate (P(3HB--3HV) copolymers are an attractive class of biopolymers whose properties can be tailored by changing the 3-hydroxyvalerate monomer (3HV) concentration, offering the possibility of counteracting problems related to high crystallinity, brittleness, and processability. However, there are few studies about the effects of 3HV content on the processability of copolymers. The present study aims to provide new insights into the effect of 3HV content on the processing step including common practices like compounding, addition of nucleation agents and/or amorphous polymers as plasticizers.

View Article and Find Full Text PDF

In order to lengthen the life cycle of packaging materials, it is essential to study their potential for reuse. This has been never carried out for emerging bio-based and biodegradable materials such as PHBV/(ligno-)cellulosic fibre-based biocomposite materials. This work therefore highlights the impact of successive dishwashing cycles on the physical-chemical and structural stability of such materials.

View Article and Find Full Text PDF

Several naturally occurring biological systems, such as bones, nacre or wood, display hierarchical architectures with a central role of the nanostructuration that allows reaching amazing properties such as high strength and toughness. Developing such architectures in man-made materials is highly challenging, and recent research relies on this concept of hierarchical structures to design high-performance composite materials. This review deals more specifically with the development of hierarchical fibres by the deposition of nano-objects at their surface to tailor the fibre/matrix interphase in (bio)composites.

View Article and Find Full Text PDF

This work is focused on the modification of the interphase zone in short flax fibres / polypropylene (PP) composites by a bio-inspired modification of fibres called "nanostructuration" that uses the adsorption of biomass by-products, i.e. cellulose nanocrystals (CNC) and xyloglucan (XG), to create hierarchical flax fibres.

View Article and Find Full Text PDF

Green treatment of natural fibres is a major issue in paper, textile and biocomposites industries to design innovative and eco-friendly products. In this work, hierarchical structuring of flax woven fabrics by the adsorption of xyloglucan (XG) and cellulose nanocrystals (CNC) is studied. Indeed, CNC have high mechanical properties, high specific surface area and great potential for functionalization.

View Article and Find Full Text PDF