Int J Environ Res Public Health
February 2021
Because most humans live and work in populated environments, researchers recently took into account that people may not only experience first-hand stress, but also second-hand stress related to the ability to empathically share another person's stress response. Recently, researchers have begun to more closely examine the existence of such empathic stress and highlighted the human propensity to physiologically resonate with the stress responses of others. As in case of first-hand stress, empathic stress could be deleterious for health if people experience exacerbated activation of hypothalamic-pituitary-adrenal and autonomic nervous systems.
View Article and Find Full Text PDFDespite considerable appeal, the growing appreciation of biosignals complexity reflects that system complexity needs additional support. A dynamically coordinated network of neurovisceral integration has been described that links prefrontal-subcortical inhibitory circuits to vagally-mediated heart rate variability. Chronic stress is known to alter network interactions by impairing amygdala functional connectivity.
View Article and Find Full Text PDFMany people experience mild stress in modern society which raises the need for an improved understanding of psychophysiological responses to stressors. Heart rate variability (HRV) may be associated with a flexible network of intricate neural structures which are dynamically organized to cope with diverse challenges. HRV was obtained in thirty-three healthy participants performing a cognitive task both with and without added stressors.
View Article and Find Full Text PDFFluctuations in cyclic tasks periods is a known characteristic of human motor control. Specifically, long-range fractal fluctuations have been evidenced in the temporal structure of these variations in human locomotion and thought to be the outcome of a multicomponent physiologic system in which control is distributed across intricate cortical, spinal and neuromuscular regulation loops. Combined with long-range correlation analyses, short-range autocorrelations have proven their use to describe control distribution across central and motor components.
View Article and Find Full Text PDFDiverse indicators of postural control in Humans have been explored for decades, mostly based on the trajectory of the center-of-pressure. Classical approaches focus on variability, based on the notion that if a posture is too variable, the subject is not stable. Going deeper, an improved understanding of underlying physiology has been gained from studying variability in different frequency ranges, pointing to specific short-loops (proprioception), and long-loops (visuo-vestibular) in neural control.
View Article and Find Full Text PDF