Publications by authors named "Estella C"

Background: The ability of animals to regenerate damaged tissue is a complex process that involves various cellular mechanisms. As animals age, they lose their regenerative abilities, making it essential to understand the underlying mechanisms that limit regenerative ability during aging. Drosophila melanogaster wing imaginal discs are epithelial structures that can regenerate after tissue injury.

View Article and Find Full Text PDF

The formation of complex three-dimensional organs during development requires precise coordination between patterning networks and mechanical forces. In particular, tissue folding is a crucial process that relies on a combination of local and tissue-wide mechanical forces. Here, we investigate the contribution of cell proliferation to epithelial morphogenesis using the Drosophila leg tarsal folds as a model.

View Article and Find Full Text PDF

Programmed cell death (apoptosis) is a homeostasis program of animal tissues designed to remove cells that are unwanted or are damaged by physiological insults. To assess the functional role of apoptosis, we have studied the consequences of subjecting Drosophila epithelial cells defective in apoptosis to stress or genetic perturbations that normally cause massive cell death. We find that many of those cells acquire persistent activity of the JNK pathway, which drives them into senescent status, characterized by arrest of cell division, cell hypertrophy, Senescent Associated ß-gal activity (SA-ß-gal), reactive oxygen species (ROS) production, Senescent Associated Secretory Phenotype (SASP) and migratory behaviour.

View Article and Find Full Text PDF

Cells have evolved mechanisms that allow them to respond to DNA damage to preserve genomic integrity and maintain tissue homeostasis. These responses include the activation of the cell cycle checkpoints and the repair mechanisms or the induction of apoptosis that eventually will eliminate damaged cells. These "life" vs.

View Article and Find Full Text PDF

A striking feature of the nervous system pertains to the appearance of different neural cell subtypes at different axial levels. Studies in the Drosophila central nervous system reveal that one mechanism underlying such segmental differences pertains to the segment-specific removal of cells by programmed cell death (PCD). One group of genes involved in segment-specific PCD is the Hox homeotic genes.

View Article and Find Full Text PDF

Exposure to genotoxic stress promotes cell cycle arrest and DNA repair or apoptosis. These "life" or "death" cell fate decisions often rely on the activity of the tumor suppressor gene p53. Therefore, the precise regulation of p53 is essential to maintain tissue homeostasis and to prevent cancer development.

View Article and Find Full Text PDF

Appendage development requires the coordinated function of signaling pathways and transcription factors to pattern the leg along the three main axes: the antero-posterior (AP), proximo-distal (PD), and dorso-ventral (DV). The leg DV axis is organized by two morphogens, Decapentaplegic (Dpp), and Wingless (Wg), which direct dorsal and ventral cell fates, respectively. However, how these signals regulate the differential expression of its target genes is mostly unknown.

View Article and Find Full Text PDF

Damage in the nervous system induces a stereotypical response that is mediated by glial cells. Here, we use the eye disc of Drosophila melanogaster as a model to explore the mechanisms involved in promoting glial cell response after neuronal cell death induction. We demonstrate that these cells rapidly respond to neuronal apoptosis by increasing in number and undergoing morphological changes, which will ultimately grant them phagocytic abilities.

View Article and Find Full Text PDF

The Sp family of transcription factors plays important functions during development and disease. An evolutionary conserved role for some Sp family members is the control of limb development. The family is characterized by the presence of three C2H2-type zinc fingers and an adjacent 10 aa region with an unknown function called the Buttonhead (BTD) box.

View Article and Find Full Text PDF

Notch pathway plays diverse and fundamental roles during animal development. One of the most relevant, which arises directly from its unique mode of activation, is the specification of cell fates and tissue boundaries. The development of the leg of Drosophila melanogaster is a fine example of this Notch function, as it is required to specify the fate of the cells that will eventually form the leg joints, the flexible structures that separate the different segments of the adult leg.

View Article and Find Full Text PDF

The mechanisms that control tissue patterning and cell behavior are extensively studied separately, but much less is known about how these two processes are coordinated. Here we show that the Drosophila transcription factor Dysfusion (Dysf) directs leg epithelial folding and joint formation through the regulation of Rho1 activity. We found that Dysf-induced Rho1 activity promotes apical constriction specifically in folding epithelial cells.

View Article and Find Full Text PDF

Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACi) had emerged as promising drugs in leukaemia, but their toxicity due to lack of specificity limited their use. Therefore, there is a need to elucidate the role of HDACs in specific settings. The study of HDAC expression in childhood leukaemia could help to choose more specific HDACi for selected candidates in a personalized approach.

View Article and Find Full Text PDF

The insect wing is a key evolutionary innovation that was essential for insect diversification. Yet despite its importance, there is still debate about its evolutionary origins. Two main hypotheses have been proposed: the paranotal hypothesis, which suggests that wings evolved as an extension of the dorsal thorax, and the gill-exite hypothesis, which proposes that wings were derived from a modification of a pre-existing branch at the dorsal base (subcoxa) of the leg.

View Article and Find Full Text PDF

The appendages of arthropods and vertebrates are not homologous structures, although the underlying genetic mechanisms that pattern them are highly conserved. Members of the Sp family of transcription factors are expressed in the developing limbs and their function is required for limb growth in both insects and chordates. Despite the fundamental and conserved role that these transcription factors play during appendage development, their target genes and the mechanisms by which they participate in control limb growth are mostly unknown.

View Article and Find Full Text PDF

The subdivision of cell populations in compartments is a key event during animal development. In Drosophila, the gene apterous (ap) divides the wing imaginal disc in dorsal vs ventral cell lineages and is required for wing formation. ap function as a dorsal selector gene has been extensively studied.

View Article and Find Full Text PDF

A characteristic of all arthropods is the presence of flexible structures called joints that connect all leg segments. Drosophila legs include two types of joints: the proximal or "true" joints that are motile due to the presence of muscle attachment and the distal joints that lack musculature. These joints are not only morphologically, functionally and evolutionarily different, but also the morphogenetic program that forms them is distinct.

View Article and Find Full Text PDF

The Sixth Evian Annual Reproduction (EVAR) Workshop Group Meeting was held to evaluate the impact of IVF/intracytoplasmic sperm injection on the health of assisted-conception children. Epidemiologists, reproductive endocrinologists, embryologists and geneticists presented data from published literature and ongoing research on the incidence of genetic and epigenetic abnormalities and congenital malformations in assisted-conception versus naturally conceived children to reach a consensus on the reasons for potential differences in outcomes between these two groups. IVF-conceived children have lower birthweights and higher peripheral fat, blood pressure and fasting glucose concentrations than controls.

View Article and Find Full Text PDF

Over 6,000 fragments from the genome of Drosophila melanogaster were analyzed for their ability to drive expression of GAL4 reporter genes in the third-instar larval imaginal discs. About 1,200 reporter genes drove expression in the eye, antenna, leg, wing, haltere, or genital imaginal discs. The patterns ranged from large regions to individual cells.

View Article and Find Full Text PDF

Decidualization is a morphological and biochemical transformation of endometrial stromal fibroblast into differentiated decidual cells, which is critical for embryo implantation and pregnancy establishment. The complex regulatory networks have been elucidated at both the transcriptome and the proteome levels, however very little is known about the post-transcriptional regulation of this process. miRNAs regulate multiple physiological pathways and their de-regulation is associated with human disorders including gynaecological conditions such as endometriosis and preeclampsia.

View Article and Find Full Text PDF

Annexin A2 (ANXA2) is present in vivo in the mid- and late-secretory endometria and is mainly localized in the luminal epithelium. Our aim was to evaluate its function in regulating the human implantation process. With an in vitro adhesion model, constructed to evaluate how the mouse embryo and JEG-3 spheroids attach to human endometrial epithelial cells, we demonstrated that ANXA2 inhibition significantly diminishes embryo adhesiveness.

View Article and Find Full Text PDF
Article Synopsis
  • The proximodistal (PD) axis in animal appendages, essential for leg formation, arises orthogonally from main body axes.
  • Recent findings reveal that the morphogens Wingless (Wg) and Decapentaplegic (Dpp) trigger a genetic cascade and establish the PD axis in Drosophila legs through their influence on gene expression.
  • The interaction between key genes such as Distal-less (Dll) and dachshund (dac), alongside growth in the leg imaginal disc, ultimately leads to a rudimentary PD axis and further leg development.
View Article and Find Full Text PDF

Invasion of the trophoblast into the maternal decidua is regulated by both the trophoectoderm and the endometrial stroma, and entails the action of tissue remodeling enzymes. Trophoblast invasion requires the action of metalloproteinases (MMPs) to degrade extracellular matrix (ECM) proteins and in turn, decidual cells express tissue inhibitors of MMPs (TIMPs). The balance between these promoting and restraining factors is a key event for the successful outcome of pregnancy.

View Article and Find Full Text PDF

Objective: To summarize the molecular processes involved in fetal programming, to describe how assisted reproduction technologies (ART) may affect the epigenetic pattern of the embryo, and to highlight the current knowledge of the role of perinatal events in the subsequent development of reproductive pathology affecting infertile patients.

Design: A literature review of fetal programming of adulthood gynecologic diseases and ART. A Medline search was performed with the following keywords: (fetal programming OR epigenetics OR methylation OR acetylation) AND (IVF OR ART) AND (gynecology).

View Article and Find Full Text PDF