The elucidation of the physicochemical properties of glycosidases is essential for their subsequent technological application, which may include saccharide hydrolysis processes and oligosaccharide synthesis. As the application of cloning, purification and enzymatic immobilization methods can be time consuming and require a heavy financial investment, this study has validated the recombinant production of the set of Lacticaseibacillus rhamnosus fucosidases fused with Usp45 and SpaX anchored to the cell wall of Lacticaseibacillus cremoris subsp cremoris MG1363, with the aim of avoiding the purification and stabilization steps. The cell debris harboring the anchored AlfA, AlfB and AlfC fucosidases showed activity against p-nitrophenyl α-L-fucopyranoside of 6.
View Article and Find Full Text PDFThis study describes the molecular identification, biochemical characterization, and stabilization of three recombinant AlfA, AlfB, and AlfC fucosidases from Lacticaseibacillus rhamnosus INIA P603. Even though previous studies revealed the presence of fucosidase activity in L. rhamnosus extracts, the identification of the fucosidases, their physicochemical properties, and the substrate spectrum remained unknown.
View Article and Find Full Text PDF