Publications by authors named "Estela de Oliveira Nunes"

This study aimed to establish a method for the extraction, enrichment, and identification of volatile organic compounds (VOCs) released by the flowers of purple (BRS 399) and white (DONMARIO 6563) soybean varieties. We tested the Static Headspace (HS) and Solid Phase Microextraction (SPME) methods using various fibre types: PDMS (Polydimethylsiloxane), PDMS/DVB (Divinylbenzene), and PDMS/DVB/CAR (Carboxen). We employed gas chromatography-mass spectrometry (GC-MS) to identify the VOCs.

View Article and Find Full Text PDF

Studies on the antimicrobial effects of microalgae extracts are commonly reported using algae biomass grown in sterile synthetic mineral medium and controlled laboratory conditions. However, variations in environmental conditions and culture medium composition are known to alter microalgae biochemical structure possibly affecting the type and concentrations of bioactive compounds with antimicrobial properties. In this work, solvent extracts of the microalgae Chlorella spp.

View Article and Find Full Text PDF

Terpenes produced by plants comprise a diverse range of secondary metabolites, including volatile organic compounds (VOCs). Terpene VOC production may be altered after damage or by biological stimuli such as bacterial, fungal and insects, and subsequent triggering of plant defense responses. These VOCs originate in plants from two independent pathways: the mevalonate and the methylerythritol phosphate pathways, which utilize dimethylallyl and isopentenyl diphosphates to form the terpenoidal precursors.

View Article and Find Full Text PDF

Introduction: Crotalaria spectabilis is an important species used as a pre-plant cover for soybean crops to control the proliferation of endoparasitic nematodes. Species from the Crotalaria genus are known for presenting pyrrolizidine alkaloids (PAs) in their composition, however, C. spectabilis is still considered chemically under-explored.

View Article and Find Full Text PDF

Asian Soybean Rust (ASR), caused by the biotrophic fungus Phakopsora pachyrhizi, is a devastating disease with an estimated crop yield loss of up to 90%. Yet, there is a nerf of information on the metabolic response of soybean plants to the pathogen Untargeted metabolomics and Global Natural Products Social Molecular Networking platform approach was used to explore soybean metabolome modulation to P. pachyrhizi infection.

View Article and Find Full Text PDF

Rationale: The nematode Aphelenchoides besseyi is the causal agent of green stem and foliar retention, a soybean disease recently described in Brazil. This condition can reduce soybean yield by up to 100%. However, little is known about chemical interactions between the plant and pathogen.

View Article and Find Full Text PDF