Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF.
View Article and Find Full Text PDFDue to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span.
View Article and Find Full Text PDFAim: Hearing loss is the most common sensory disorder in humans, its main cause being the loss of cochlear hair cells. We studied the potential of human mesenchymal stem cells (hMSCs) to differentiate towards hair cells and auditory neurons.
Materials & Methods: hMSCs were first differentiated to neural progenitors and subsequently to hair cell- or auditory neuron-like cells using in vitro culture methods.
Fibroblast growth factor-2 (FGF2) has been postulated to be a key regulator involved in the proliferation, differentiation, and regeneration of sensory hair cells. Here we have addressed the potential functions of FGF2 during the formation and regeneration of the auditory epithelium in chicken and mice. By using viral gene transfer, based on herpes simplex type 1 virus (HSV-1), we show that ectopically applied FGF2 drastically increases the number of cells expressing early hair cell markers during embryonic development in avians.
View Article and Find Full Text PDFThe aim of gene transfer to the cochlea and vestibular organ is to protect the inner ear from different disorders. Although various vectors for gene delivery have been used with some success, there remains a need for a reliable transfer of genes into the inner ear without damaging cochlear function. Here, we have tested a novel application method for gene transfer into the rat inner ear in vivo using herpes simplex virus type-1(HSV-1)-based amplicon vectors.
View Article and Find Full Text PDFIn the last years, intracellular organella have emerged as key components in the generation and transduction of Ca(2+) signals in adrenal chromaffin cells. Therefore, accurate measurements of Ca(2+) inside cytoplasmic organella are essential for a comprehensive analysis of the Ca(2+) redistribution that follows cell stimulation. We have engineered the Ca(2+)-sensitive photoprotein aequorin to monitor selectively Ca(2+) within the endoplasmic reticulum and the mitochondria.
View Article and Find Full Text PDFNeurotrophin-3 (NT-3) is one of the most potent stimulators for survival of auditory sensory neurons. Viral transfer of neurotrophins into auditory neurons may offer a route to provide a permanent supply of the growth factor and guarantee their long-term survival. Herpes simplex virus type 1 (HSV-1)-based vectors have demonstrated their effectiveness to transfer genes into peripheral sensory neurons.
View Article and Find Full Text PDF